Vorticity in Flow Fields (in Relation to Prandtl s Work and Subsequent Developments)

  • Tsutomu Kambe
Conference paper
Part of the Solid mechanics and its applications book series (SMIA, volume 129)

Keywords

Entropy Vortex Vorticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    . Ludwig Prandtl. Ü ber Flüssigkeitbewegung bei sehr kleiner Reibung”, Ver- handlungen des III. Internationalen Mathematiker-Kongress (Heidelberg 1904), pp. 484-491, 1905.Google Scholar
  2. 2.
    Prandtl L. Abriss der Strömungslehre, Friedr.Vieweg & Sohn, Braunschweig, 1931.Google Scholar
  3. 3.
    Prandtl L. Führer durch die Strömungslehre, Friedr.Vieweg & Sohn, Braun- schweig, 1965.MATHGoogle Scholar
  4. 4.
    . Prandtl L and Tietjens OG. Fundamentals of Hydro- and Aeromechanics, McGraw-Hill. (Translated from the German edition, Springer, 1931.), 1934.Google Scholar
  5. 5.
    . Prandtl L and Tietjens OG. Applied Hydro- and Aeromechanics, McGrawHill. (Translated from the German edition, Springer, 1931.), 1934, [Dover].Google Scholar
  6. 6.
    . Saffman PG. Vortex Dynamics, Cambridge Univ. Press, 1992.Google Scholar
  7. 7.
    Minota T. Interaction of a shock wave with a high-speed vortex ring”, Fluid Dyn. Res. 12, pp. 335-342, 1993.CrossRefGoogle Scholar
  8. 8.
    . von Karman T. Göttingen Nachrichten, Göttingen, pp. 547-556, 1912.Google Scholar
  9. 9.
    . Bjerkness V. Lectures on hydrodynamic forces acting at a distance” (Ger- man), Leipzig, 1900-1902.Google Scholar
  10. 10.
    Powell A. Theory of vortex sound”, J. Acoust. Soc. Am. 36, 177-195, 1964.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Howe MS. Contributions to the theory of aerodynamic sound”, J. Fluid Mech. 71, pp. 625-973, 1975.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Möhring W. On vortex sound at low Mach number”, J. Fluid Mech. 85, pp. 685-691, 1978.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Obermeier F. Berechnung aerodynamisch erzeugter Shallfelder mittels der Methode der Matched Asymptotic Expansions”, Acustica 18, 238-240, 1967.MATHGoogle Scholar
  14. 14.
    Kambe T and Minota T. Acoustic wave radiated by head-on collision of two vortex rings”, Proc. R. Soc. Lond. A 386, pp. 277-308, 1983.CrossRefGoogle Scholar
  15. 15.
    Minota T, Nishida M and Lee MG. Head-on collision of two compressible vortex rings”, Fluid Dyn. Res. 22, pp. 43-60, 1998.CrossRefGoogle Scholar
  16. 16.
    . Batchelor GK. The Theory of homogeneous turbulence, Cambridge Univ. Press, 1953.Google Scholar
  17. 17.
    . Kambe T. Statistical laws governed by vortex structures in fully developed turbulence”, in IUTAM Symposium on Geometry and Statistics of Turbulence (eds: Kambe, Nakano & Miyauchi, held in 1999), Kluwer Academic Pub., Dordrecht, pp. 117-126, 2001.Google Scholar
  18. 18.
    . Yokokawa M, Itakura K, Uno A, Ishihara T, Kaneda Y. 16.4TFlops direct numerical simulation of turbulence by a Fourier spectral method on the Earth Simulator”, Proc. IEEE/ACM SC2002 Conf., Baltimore, 2002 (http://www.sc-2002.org/paperpdfs/pap.pap273.pdf); Kaneda Y, Ishihara T, Yokokawa M, Itakura K, Uno A. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box”, Physics of Fluids, 15 (2), pp. L21-L24, 2003.
  19. 19.
    . Kambe T. Geometrical Theory of Dynamical Systems and Fluid Flows, Ch.7, World Scientific Publishing Co., 2004; Kambe T. Gauge principle and variational formulation of ideal fluid flows”, Preprint TK2004 ( http://hw001.gate01.com/˜kambe).
  20. 20.
    . Kambe T. Gauge principle and variational formulation for flows of an ideal fluid”, Acta Mechanica Sinica 19, pp. 437-452, 2003; Kambe T. Gauge principle for flows of an ideal fluid”, Fluid Dyn. Res. 32, pp. 193-199, 2003.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Tsutomu Kambe
    • 1
  1. 1.IDSMeguro-kuJapan

Personalised recommendations