The Mechanism of Plastid Division: The Structure and Origin of The Plastid Division Apparatus

  • Shin-ya Miyagishima
  • Tsuneyoshi Kuroiwa
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 23)

Chloroplasts were derived from a free-living cyanobacterium which was engulfed by a primary non-photosynthetic eukaryotic host cell and subsequently evolved into a plastid. Plastids are never synthesized de novo therefore, as with bacteria, their continuity is maintained by the division of preexisting plastids. Although plastids have their own genome, plastid division is performed by host cell nuclear-encoded proteins. Consistent with their bacterial origin, plastids use the bacterial FtsZ ring and related factors, the genes of which were transferred to the host eukaryotic nucleus over evolutionary time. Recent genome sequencing projects show that most other proteins once involved in bacterial division have been lost. It was recently suggested that another ring structure called the plastid-dividing ring, which was found before FtsZ, is of host eukaryotic origin. Moreover, recent studies have revealed that the rings of the eukaryote-specific dynamin-related family of GTPases are involved in the final stage of plastid division. These results suggest that plastid division is mediated by the coordinated action of a prokaryote-derived division system and a system added by the host eukaryotic cell. During plastid division, the FtsZ, plastid-dividing (PD) and dynamin rings formin this order. The PD ring is a double (or triple) ring structure located both inside and outside the plastid envelope, the FtsZ ring forms in the stroma and dynamin functions at the cytosolic side of the division site. Recent studies also showed that primitive mitochondria use mechanisms very similar to those of plastids, suggesting that the host cell used almost the same strategy to regulate the division of the cyanobacterial endosymbiont as it did for mitochondria.


Chloroplast Division Division Site Plastid Divide FtsZ Protein Cyanidioschyzon Merolae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arimura S and Tsutsumi N (2002) A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mi-tochondrial division. Proc Natl Acad Sci USA 99: 5727-5731PubMedCrossRefGoogle Scholar
  2. Asano T, Yoshioka Y, Kurei S, Sakamoto W, Sodmergen and Machida Y (2004) A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis. Plant J 38: 448-459PubMedCrossRefGoogle Scholar
  3. Beech PL and Gilson PR (2000) FtsZ and organelle division in protists. Protist 151: 11-16PubMedCrossRefGoogle Scholar
  4. Beech PL, Nheu T, Schultz T, Herbert S, Lithgow T, Gilson PR and McFadden GI (2000) Mitochondrial FtsZ in a chromo-phyte alga. Science 287: 1276-1279PubMedCrossRefGoogle Scholar
  5. Bi E and Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354: 161-164PubMedCrossRefGoogle Scholar
  6. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J and Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1: 298-304PubMedCrossRefGoogle Scholar
  7. Boffey SA and Lloyd D (1988) Division and Segregation of Or-ganelles. Cambridge University Press, Cambridge, UKGoogle Scholar
  8. Bramhill D (1997) Bacterial cell division. Annu Rev Cell Dev Biol 13: 395-424PubMedCrossRefGoogle Scholar
  9. Butterfass T (1979) Patterns of Chloroplast Reproduction. Springer-Verlag, Berlin and New YorkGoogle Scholar
  10. Cavalier-Smith T (2000) Membrane heredity and early chloro-plast evolution. Trends Plant Sci 5: 174-182PubMedCrossRefGoogle Scholar
  11. Chaly N and Possingham JV (1981) Structure of constricted pro-plastids in meristematic plant tissue. Biol Cell 41: 203-210Google Scholar
  12. Chiba Y (1951) Cytochemical studies on chloroplasts: I. Cyto-logic demonstration of nucleic acids in chloroplasts. Cytologia 16: 259-264Google Scholar
  13. Chida Y and Ueda K (1991) Division of chloroplasts in a green alga, Trebouxia potteri. Ann Bot 67: 435-442Google Scholar
  14. Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD and Osteryoung KW (2000) A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr Biol 10: 507-516PubMedCrossRefGoogle Scholar
  15. Damke H, Baba T, Warnock DE and Schmid SL (1994) Induc-tion of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol 127: 915-934PubMedCrossRefGoogle Scholar
  16. de Boer PA, Crossley RE and Rothfield LI (1989) A divi-sion inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56: 641-649PubMedCrossRefGoogle Scholar
  17. De Luca P, Tadei R and Varano L (1978) Cyanidioschyzon mero-lae: a new alga of thermal acidic environments. Webbia 33: 37-44Google Scholar
  18. Duckett JG and Ligrone R (1993a) Plastid-dividing rings in the liverwort Odontoschisma denudatum (Mart) Dum. (Junger-manniales, Hepaticae). G Bot Ital 127: 318-319Google Scholar
  19. Duckett JG and Ligrone R (1993b) Plastid-dividing rings in ferns. Ann Bot 72: 619-627CrossRefGoogle Scholar
  20. Erickson HP (2000) Dynamin and FtsZ. Missing links in mito-chondrial and bacterial division. J Cell Biol 148: 1103-1105PubMedCrossRefGoogle Scholar
  21. Errington J, Daniel RA and Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67: 52-65PubMedCrossRefGoogle Scholar
  22. Fujiwara M and Yoshida S (2001) Chloroplast targeting of chloroplast division FtsZ2 proteins in Arabidopsis. Biochem Biophys Res Commun 287: 462-467PubMedCrossRefGoogle Scholar
  23. Fujiwara MT, Nakamura A, Itoh R, Shimada Y, Yoshida S and Moller SG (2004) Chloroplast division site placement requires dimerization of the ARC11/AtMinD1 protein in Arabidopsis. J Cell Sci 117: 2399-2410PubMedCrossRefGoogle Scholar
  24. Fulgosi H, Gerdes L, Westphal S, Glockmann C and Soll J (2002) Cell and chloroplast division requires ARTEMIS. Proc Natl Acad Sci USA 99: 11501-11506PubMedCrossRefGoogle Scholar
  25. Gao H, Kadirjan-Kalbach D, Froehlich JE and Osteryoung KW (2003) ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci USA 100: 4328-4333PubMedCrossRefGoogle Scholar
  26. Gillham NW (1994) Organelle Genes and Genomes. Oxford Uni-versity Press, Oxford, UKGoogle Scholar
  27. Gilson PR and Beech PL (2001) Cell division protein FtsZ: run-ning rings around bacteria, chloroplasts and mitochondria. Res Microbiol 152: 3-10PubMedCrossRefGoogle Scholar
  28. Gilson PR, Yu XC, Hereld D, Barth C, Savage A, Kiefel BR, Lay S, Fisher PR, Margolin W and Beech PL (2003) Two Dic-tyostelium orthologs of the prokaryotic cell division protein FtsZ localize to mitochondria and are required for the main-tenance of normal mitochondrial morphology. Eukaryot Cell 2: 1315-1326PubMedCrossRefGoogle Scholar
  29. Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141: 233-357PubMedCrossRefGoogle Scholar
  30. Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9: 678-687PubMedCrossRefGoogle Scholar
  31. Grigliatti TA, Hall L, Rosenbluth R and Suzuki DT (1973) Temparature-sensitive mutations in Drosophila melanogaster: XV. Selection of immobile adults. Mol Gen Genet 120: 107-114PubMedCrossRefGoogle Scholar
  32. Hale CA, Meinhardt H and de Boer PAJ (2001). Dynamic local-ization cycle of the cell division regulator MinE in Escherichia coli. EMBO J 20: 1563-1572PubMedCrossRefGoogle Scholar
  33. Hashimoto H (1986) Double-ring structure around the constrict-ing neck of dividing plastids of Avena sativa. Protoplasma 135: 166-172CrossRefGoogle Scholar
  34. Hashimoto H (1997) Electron-opaque annular structure girdling the constricting isthmus of the dividing chloroplasts of Het-erosigma akashiwo (Raphydophyceae, Chromophyta). Proto-plasma 197: 210-216Google Scholar
  35. Hashimoto H (2003) Plastid division: its origins and evolution. Int Rev Cytol 222: 63-98PubMedCrossRefGoogle Scholar
  36. Hashimoto H and Possingham JV (1989) Division and DNA distribution in ribosome-deficient plastids of the barley mutant “albostrians”. Protoplasma 149: 20-23CrossRefGoogle Scholar
  37. Hinshaw JE (2000) Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 16: 483-519PubMedCrossRefGoogle Scholar
  38. Hinshaw JE and Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Na-ture 374: 190-192Google Scholar
  39. Hirota Y, Ryter A and Jacob F (1968) Thermosensitive mutants of E. coli affected in the process of DNA synthesis and cellu-lar division. Cold Spring Harbor Symp Quant Biol 33: 677-693PubMedGoogle Scholar
  40. Hu Z, Mukherjee A, Pichoff S and Lutkenhaus J (1999) The MinC component of the division site selection sys-tem in Escherichia coli interacts with FtsZ to preventpolymerization. Proc Natl Acad Sci USA 96:14819-14824PubMedCrossRefGoogle Scholar
  41. Huang J, Cao C and Lutkenhaus J (1996) Interaction between FtsZ and inhibitors of cell division. J Bacteriol 178: 5080-5085PubMedGoogle Scholar
  42. Itoh R, Fujiwara M, Nagata N and Yoshida S (2001) A chloroplast protein homologous to the eubacterial topological specificity factor minE plays a role in chloroplast division. Plant Physiol 127: 1644-1655PubMedCrossRefGoogle Scholar
  43. Kiefel BR, Gilson PR and Beech PL (2004) Diverse eukary-otes have retained mitochondrial homologues of the bacterial division protein FtsZ. Protist 155: 105-115PubMedCrossRefGoogle Scholar
  44. Kiessling J, Kruse S, Rensing SA, Harter K, Decker EL and Reski R (2000) Visualization of a cytoskeleton-like FtsZ network in chloroplasts. J Cell Biol 151: 945-950PubMedCrossRefGoogle Scholar
  45. Koksharova OA and Wolk CP (2002) A novel gene that bears a DnaJ motif influences cyanobacterial cell division. J Bacteriol 184: 5524-5528PubMedCrossRefGoogle Scholar
  46. Kosaka T and Ikeda K (1983) Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J Neurobiol 14: 207-225PubMedCrossRefGoogle Scholar
  47. Kuroiwa H, Mori T, Takahara M, Miyagishima S and Kuroiwa T (2001) Multiple FtsZ rings in a pleomorphic chloroplast in embryonic cap cells of Pelargonium zonale. Cytologia 66: 227-233Google Scholar
  48. Kuroiwa H, Mori T, Takahara M, Miyagishima S and Kuroiwa T (2002) Chloroplast division machinery as revealed by im-munofluorescence and electron microscopy. Planta 215: 185-190PubMedCrossRefGoogle Scholar
  49. Kuroiwa T (1982) Mitochondrial nuclei. Int Rev Cytol 75: 1-59PubMedCrossRefGoogle Scholar
  50. Kuroiwa T (1986) Mitochondria with nucloidal division. Kagaku 56: 339-348Google Scholar
  51. Kuroiwa T (1989) The nuclei of cellular organelles and the for-mation of daughter organelles by the “plastid-dividing ring”. Bot Mag 102: 291-329CrossRefGoogle Scholar
  52. Kuroiwa T (1991) The replication, differentiation, and inheri-tance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128: 1-62CrossRefGoogle Scholar
  53. Kuroiwa T (1998) The primitive red algae Cyanidium caldarium and Cyanidioschyzon merolae as model system for investi-gating the dividing apparatus of mitochondria and plastids. BioEssays 20: 344-354CrossRefGoogle Scholar
  54. Kuroiwa T and Suzuki T (1981) Circular nuclei isolated from chloroplasts in a brown alga Ectocarpus indicus. Exp Cell Res 134: 457-461PubMedCrossRefGoogle Scholar
  55. Kuroiwa T, Kawano S and Hizume M (1977) Studies on mito-chondrial structure and function in Physarum polycephalum V. Behavior of mitochondrial nucleoids throughout mitochon-drial division cycle. J Cell Biol 72: 687-697PubMedCrossRefGoogle Scholar
  56. Kuroiwa T, Suzuki T, Ogawa K and Kawano S (1981) The chloro-plast nucleus: distribution, number, size, and a model for the multiplication of the chloroplast genome during development. Plant Cell Phsiol 22: 381-396Google Scholar
  57. Kuroiwa T, Fujie M and Kuroiwa H (1992) Studies on the be-havior of mitochondrial DNA synthesis occurs actively in a particular region just above the quiescent center in the root meristems of Pelargonium zonale. J Cell Sci 101: 483-493Google Scholar
  58. Kuroiwa T, Suzuki K and Kuroiwa H (1993) Mitochondrial di-vision by an electron-dense ring in Cyanidioschyzon merolae. Protoplasma 175: 173-177CrossRefGoogle Scholar
  59. Kuroiwa T, Kawazu T, Takahashi H, Suzuki K, Ohta N and Kuroiwa H (1994) Comparison of ultrastructures between the ultra-small eukaryote Cyanidoschyzone merolae and Cyanidium caldarim. Cytologia 59: 149-158Google Scholar
  60. Kuroiwa T, Suzuki K, Itoh R, Toda K, Okeefe TC and Kawano S (1995) Mitochondria-dividing ring: ultrastructural basis for the mechanisms of mitochondrial division in Chanidioschyzon merolae. Protoplasma 186: 12-23CrossRefGoogle Scholar
  61. Kuroiwa T, Kuroiwa H, Sakai A, Takahashi H, Toda K and Itoh R (1998) The division apparatus of plastids and mitochondria. Int Rev Cytol 181: 1-41PubMedCrossRefGoogle Scholar
  62. Kuroiwa T, Takahara M, Miygishima S, Ohashi Y, Kawamura F and Kuroiwa H (1999) The FtsZ protein is not located on outer plastid dividing rings. Cytologia 64: 333-342Google Scholar
  63. Labrousse AM, Zappaterra MD, Rude DA and van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4: 815-826PubMedCrossRefGoogle Scholar
  64. Leech RM (1976) The replication of plastids in higher plants. In: Yeoman MM (ed) Cell Division in Higher Plants, pp 135-159. Academic Press, LondonGoogle Scholar
  65. Leech RM (1986) Stability and plasticity during chloroplast de-velopment. In: Jennings DH and Trewavas JW (eds) Plasticity in Plants, Vol. 40, pp 121-153. Cambridge Universitty Press, CambridgeGoogle Scholar
  66. Leech RM, Thomson WW and Platt-Aloika KA (1981) Obser-vations on the mechanism of chloroplast division in higher plants. New Phytol 87: 1-9CrossRefGoogle Scholar
  67. Legesse-Miller A, Massol RH and Kirchhausen T (2003) Con-striction and Dnm1p recruitment are distinct processes in mi-tochondrial fission. Mol Biol Cell 14: 1953-1963PubMedCrossRefGoogle Scholar
  68. Lowe J and Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391: 203-206PubMedCrossRefGoogle Scholar
  69. Lu C, Reedy M and Erickson HP (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bac-teriol 182: 164-170Google Scholar
  70. Ma XL and Margolin W (1999) Genetic and functional analyses of the conserved C-terminal core domain of Escherichia coli FtsZ. J Bacteriol 181: 7531-7544PubMedGoogle Scholar
  71. Maple J, Chua NH and Moller SG (2002) The topological speci-ficity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J 31: 269-277PubMedCrossRefGoogle Scholar
  72. Maple J, Fujiwara MT, Kitahata N, Lawson T, Baker NR, Yoshida S and Moller SG (2004) GIANT CHLOROPLAST 1 is essen-tial for correct plastid division in Arabidopsis. Curr Biol 14: 776-781PubMedCrossRefGoogle Scholar
  73. Margolin W (2000) Self-assembling GTPase caught in the mid-dle. Curr Biol 10: R328-330PubMedCrossRefGoogle Scholar
  74. Margulis L (1970) Origin of Eukaryotic Cells. Yale University Press, New Haven, CT.Google Scholar
  75. Marks B, Stowell MH, Vallis Y, Mills IG, Gibson A, Hopkins CR and McMahon HT (2001) GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410: 231-235PubMedCrossRefGoogle Scholar
  76. Marrison JL, Rutherford SM, Robertson EJ, Lister C, Dean C and Leech RM (1999) The distinctive roles of five different ARC genes in the chloroplast division process in Arabidopsis. Plant J 18: 651-662PubMedCrossRefGoogle Scholar
  77. Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y and Kuroiwa T (2004) Genome sequence of the ultra-small unicellular red alga Cyanidioschyzon merolae 10D. Nature 428: 653-657PubMedCrossRefGoogle Scholar
  78. McAndrew RS, Froehlich JE, Vitha S, Stokes KD and Ostery-oung KW (2001) Colocalization of plastid division proteins in the chloroplast stromal compartment establishes a new func-tional relationship between FtsZ1 and FtsZ2 in higher plants. Plant Physiol 127: 1656-1666PubMedCrossRefGoogle Scholar
  79. McConnell SJ, Stewart LC, Talin A and Yaffe MP (1990) Temperature-sensitive yeast mutants defective in mitochon-drial inheritance. J Cell Biol 111: 967-976PubMedCrossRefGoogle Scholar
  80. McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37: 951-959CrossRefGoogle Scholar
  81. McFadden GI and Ralph SA (2003) Dynamin: the endosymbiosis ring of power. Proc Natl Acad Sci USA 100: 3557-3559PubMedCrossRefGoogle Scholar
  82. McFadden GI, Reith ME, Munholland J and Lang-Unnasch N (1996) Plastid in human parasites. Nature 381: 482PubMedCrossRefGoogle Scholar
  83. Minoda A, Sakagami R, Yagisawa F, Kuroiwa T and Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga,Cyanidioschyzon merolae 10D. Plant Cell Physiol 45: 667-671PubMedCrossRefGoogle Scholar
  84. Mita T and Kuroiwa T (1988) Division of plastids by a plastid-dividing ring in Cyanidium caldarium. Protoplasma (Suppl 1): 133-152.Google Scholar
  85. Mita T, Kanbe T, Tanaka K and Kuroiwa T (1986) A ring struc-ture around the dividing plane of the Cyanidium caldarium chloroplast. Protoplasma 130: 211-213CrossRefGoogle Scholar
  86. Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H and Kuroiwa T (1998a) Identification of a triple ring structure in-volved in plastid division in the primitive red alga Cyanidioschyzon merolae. J Electron Microsc 47: 269-272Google Scholar
  87. Miyagishima S, Itoh R, Toda K, Takahashi H, Kuroiwa H and Kuroiwa T (1998b) Orderly formation of the double ring struc-tures for plastid and mitochondrial division in the unicel-lular red alga Cyanidioschyzon merolae. Planta 206: 551-560CrossRefGoogle Scholar
  88. Miyagishima S, Itoh R, Toda K, Kuroiwa H and Kuroiwa T (1999a) Real-time analyses of chloroplast and mitochondrial division and differences in the behaviour of their dividing rings during contraction. Planta 207: 343-353CrossRefGoogle Scholar
  89. Miyagishima S, Itoh R, Aita S, Kuroiwa H and Kuroiwa T (1999b) Isolation of dividing chloroplasts with intact plastid-dividing rings from a synchronous culture of the unicellular red alga Cyanidioschyzon merolae. Planta 209: 371-375CrossRefGoogle Scholar
  90. Miyagishima S, Kuroiwa H and Kuroiwa T (2001a) The timing and manner of disassembly of the apparatuses for chloroplast and mitochondrial division in the red alga Cyanidioschyzon merolae. Planta 212: 517-528CrossRefGoogle Scholar
  91. Miyagishima S, Takahara M and Kuroiwa T (2001b) Novel fil-aments 5 nm in diameter constitute the cytosolic ring of the plastid division apparatus. Plant Cell 13: 707-721CrossRefGoogle Scholar
  92. Miyagishima S, Takahara M, Mori T, Kuroiwa H, Higashiyama T and Kuroiwa T (2001c) Plastid division is driven by a com-plex mechanism that involves differential transition of the bacterial and eukaryotic division rings. Plant Cell 13: 2257-2268CrossRefGoogle Scholar
  93. Miyagishima S, Nishida K, Mori T, Matsuzaki M, Higashiyama T, Kuroiwa H and Kuroiwa T (2003a) A plant-specific dynamin-related protein forms a ring at the chloroplast division site. Plant Cell 15: 655-665CrossRefGoogle Scholar
  94. Miyagishima S, Nishida K and Kuroiwa T (2003b) An evolu-tionary puzzle: chloroplast and mitochondrial division rings. Trends Plant Sci 8: 432-438CrossRefGoogle Scholar
  95. Miyagishima S, Nozaki H, Nishida K, Nishida K, Matsuzaki M and Kuroiwa T (2004) Two types of FtsZ proteins in mito-chondria and red-lineage chloroplasts: the duplication of FtsZ is implicated in endosymbiosis. J Mol Evol 58: 291-303PubMedCrossRefGoogle Scholar
  96. Miyamura S, Nagata T and Kuroiwa T (1986) Quantitative fluo-rescence microscopy on dynamic changes of plastid nucleoids during wheat development. Protoplasma 133: 66-72CrossRefGoogle Scholar
  97. Miyamura S, Kuroiwa T and Nagata T (1990) Multiplication and differentiation of plastid nucleoids during development of chloroplast and etioplasts from proplastid in Triticum aestivum. Plant Cell Physiol 31: 597-602Google Scholar
  98. Momoyama Y, Miyazawa Y, Miyagishima S, Mori T, Misumi O, Kuroiwa H and Kuroiwa T (2003) The division of pleomorphic plastids with multiple FtsZ rings in tobacco BY-2 cells. Eur J Cell Biol. 82: 323-332PubMedCrossRefGoogle Scholar
  99. Mori T, Takahara M, Miyagishima S, Kuroiwa H and Kuroiwa T (2001a) Visualization of FtsZ rings in plastids of the mi-crospore in Lilium longiflorum. Cytologia 66: 113-115Google Scholar
  100. Mori T, Kuroiwa H, Takahara M, Miyagishima S and Kuroiwa T (2001b) Visualization of an FtsZ ring in chloroplasts of Lilium longiflorum leaves. Plant Cell Physiol 42: 555-559CrossRefGoogle Scholar
  101. Nanninga N (1998) Morphogenesis of Escherichia coli. Micro-biol Mol Biol 62: 110-129Google Scholar
  102. Nishida K, Takahara M, Miyagishima S, Kuroiwa H, Matsuzaki M and Kuroiwa T (2003) Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proc Natl Acad Sci USA 100: 2146-2151PubMedCrossRefGoogle Scholar
  103. Ogawa S, Ueda K and Noguchi T (1995) Division apparatus of chloroplast in Nannochloris bacillaris. J Phycol 31: 132-137CrossRefGoogle Scholar
  104. Ohta N, Sato N and Kuroiwa T (1998) Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide se-quence. Nucleic Acids Res 26: 5190-5298PubMedCrossRefGoogle Scholar
  105. Ohta N, Matsuzaki M, Misumi O, Miyagishima S, Nozaki H, Tanaka K, Shin-I T, Kohara Y and Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellularred alga Cyanidioschyzon merolae. DNA Res 10: 67-77PubMedCrossRefGoogle Scholar
  106. Oross JW and Possingham JV (1989) Ultrastructural features of the constricted region of dividing plastids. Protoplasma 150: 131-138CrossRefGoogle Scholar
  107. Osteryoung KW (2001) Organelle fission in eukaryotes. Curr Opin Microbiol 4: 639-646PubMedCrossRefGoogle Scholar
  108. Osteryoung KW and McAndrew RS (2001) The plastid division machine. Annu Rev Plant Physiol Plant Mol Biol 52: 315-333PubMedCrossRefGoogle Scholar
  109. Osteryoung KW and Nunnari J (2003) The division of endosym-biotic organelles. Science 302: 1698-1704PubMedCrossRefGoogle Scholar
  110. Osteryoung KW and Vierling E (1995) Conserved cell and or-ganelle division. Nature 376: 473-474PubMedCrossRefGoogle Scholar
  111. Osteryoung KW, Stokes KD, Rutherford SM, Percival AL and Lee WY (1998) Chloroplast division in higher plants requires members of two functionally divergent gene families with ho-mology to bacterial ftsZ. Plant Cell 10: 1991-2004PubMedCrossRefGoogle Scholar
  112. Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W and Shaw JM (1998) The dynamin-related GT-Pase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol 143: 333-349PubMedCrossRefGoogle Scholar
  113. Possingham JV and Lawrence ME (1983) Controls to plastid division. Int Rev Cytol 84: 1-56CrossRefGoogle Scholar
  114. Pyke KA (1997) The genetic control of plastid division in higher plants. Am J Bot 84: 1017-1027CrossRefGoogle Scholar
  115. Pyke KA (1999) Plastid division and development. Plant Cell 11: 549-556.PubMedCrossRefGoogle Scholar
  116. Pyke KA and Leech RM (1992) Nuclear mutations radically alter chloroplast division and expansion in A. thaliana. Plant Physiol 99: 1005-1008PubMedCrossRefGoogle Scholar
  117. Pyke KA and Leech RM (1994) A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol 104: 201-207PubMedGoogle Scholar
  118. Reddy MS, Dinkins R and Collins GB (2002) Overexpression of the Arabidopsis thaliana MinE1 bacterial division inhibitor homologue gene alters chloroplast size and morphology in transgenic Arabidopsis and tobacco plants. Planta 215: 167-176PubMedCrossRefGoogle Scholar
  119. Robertson EJ, Pyke KA and Leech RM (1995) arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplas-tid proliferation and morphology in shoot and root apices. J Cell Sci 108: 2937-2944PubMedGoogle Scholar
  120. Robertson EJ, Rutherford SM and Leech RM (1996) Character-ization of chloroplast division using the Arabidopsis mutant arc5. Plant Physiol 112: 149-159PubMedCrossRefGoogle Scholar
  121. Rothfield L, Justice S and Garcia-Lara J (1999) Bacterial cell division. Annu Rev Genet 33: 423-448PubMedCrossRefGoogle Scholar
  122. Schimper AFW (1885) Uber die Entwicklung der chlorophyll Korner und Farbkorner. Bot Zeit 41: 105-114Google Scholar
  123. Schmidt KL, Peterson ND, Kustusch RJ, Wissel MC, Graham B, Phillips GJ and Weiss DS (2004) A predicted ABC trans-porter, FtsEX, is needed for cell division in Escherichia coli. J Bacteriol 186: 785-793PubMedCrossRefGoogle Scholar
  124. Sesaki H and Jensen RE (1999) Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 147: 699-706PubMedCrossRefGoogle Scholar
  125. Sever S, Damke H and Schmid SL (2000) Dynamin: GTP con-trols the formation of constricted coated pits, the rate limiting step in clathrin-mediated endocytosis. J Cell Biol 150: 1137-1148PubMedCrossRefGoogle Scholar
  126. Shpetner HS and Vallee RB (1989) Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59: 421-432PubMedCrossRefGoogle Scholar
  127. Smirnova E, Shurland DL, Ryazantsev SN and van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143: 351-358PubMedCrossRefGoogle Scholar
  128. Smirnova E, Griparic L, Shurland DL and van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mito-chondrial division in mammalian cells. Mol Biol Cell 12: 2245-2256PubMedGoogle Scholar
  129. Strepp R, Scholz S, Kruse S, Speth V and Reski R (1998) Plant molecular gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA 95: 4368-4373PubMedCrossRefGoogle Scholar
  130. Suzuki K and Ueda R (1975) Electron microscope observations on plastid division in root meristematic cells of Pisum sativum L. Bot Mag 88: 319-321CrossRefGoogle Scholar
  131. Suzuki K, Ehara T, Osafune T, Kuroiwa H, Kawano S and Kuroiwa T (1994) Behavior of mitochondria, chloroplasts and their nuclei during the mitotic cycle in the ultramicroalga Cyanidioschyzon merolae. Eur J Cell Biol 63: 280-288PubMedGoogle Scholar
  132. Suzuki T, Kawano S, Sakai A, Fujie M, Kuroiwa H Nakamura H and Kuroiwa T (1992) Preferential mitochondrial and plas-tid DNA synthesis before multiple cell divisions in Nicotiana tabacum. J Cell Sci 103: 831-837Google Scholar
  133. Swift H and Woltenholme DR (1969) Mitochondria and chloro-plast: nucleic acids and the problem of biogenesis (genetics and biology). In: Lima-de-Faria A (ed) Handbook of Molecular Cytology, pp 222-245. North-Holland, AmsterdamGoogle Scholar
  134. Takahara M, Takahashi H, Matsunaga S, Miyagishima S, Sakai A, Kawano S and Kuroiwa T (2000) A putative mitochon-drial ftsZ gene is encoded in the unicellular primitive red alga Cyanidioschyzon merolae. Mol Gen Genet 264: 452-460PubMedCrossRefGoogle Scholar
  135. Takahara M, Kuroiwa H, Miyagishima S, Mori T, Kuroiwa T (2001) Localization of the mitochondrial FtsZ protein in a dividing mitochondrion. Cytologia 66: 421-425Google Scholar
  136. Takahashi H, Takano H, Itoh R, Toda K, Kawano S and Kuroiwa T (1998) A possible role of actin dots in the formation of the contractile ring in the ultra-micro alga Cyanidium caldarium RK-1. Protoplasma 201: 115-119CrossRefGoogle Scholar
  137. Takei K, McPherson PS, Schmid SL and De Camilli P (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374: 186-190PubMedCrossRefGoogle Scholar
  138. Terui S, Suzuki K, Takahashi H, Itoh R and Kuroiwa T (1995) Synchronization of chloroplast division in the ul-tramicroalga Cyanidioschyzon merolae (Rhodophyta) by treatment with light and aphidicolin. J Phycol 31:958-961CrossRefGoogle Scholar
  139. Tewinkel M and Volkmann D (1987) Observations on dividing plastids in the protonema of the moss Funaria hygrometrica Sibth. Arrangement of microtubules and filaments. Planta 172: 309-320CrossRefGoogle Scholar
  140. van der Bliek AM (1999) Functional diversity in the dynamin family. Trends Cell Biol 9: 96-102PubMedCrossRefGoogle Scholar
  141. van der Bliek AM and Meyerowitz EM (1991) Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351: 411-444PubMedCrossRefGoogle Scholar
  142. van der Bliek AM, Redelmeier TE, Damke H, Tisdale EJ, Meyerowitz EM and Schmid SL (1993) Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol 122: 553-563PubMedCrossRefGoogle Scholar
  143. Vitha S, McAndrew RS and Osteryoung KW (2001) FtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153: 111-119PubMedCrossRefGoogle Scholar
  144. Vitha S, Froehlich JE, Koksharova O, Pyke KA, van Erp H and Osteryoung KW (2003) ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Plant Cell 15: 1918-1933PubMedCrossRefGoogle Scholar
  145. Wang D, Kong D, Wang Y, Hu Y, He Y and Sun J (2003) Isola-tion of two plastid division ftsZ genes from Chlamydomonas reinhardtii and its evolutionary implication for the role of FtsZ in plastid division. J Exp Bot 54: 1115-1116PubMedCrossRefGoogle Scholar
  146. Yaffe MP (1999) Dynamic mitochondria. Nat Cell Biol 1: E149-150PubMedCrossRefGoogle Scholar
  147. Yagisawa F, Mori T, Higashiyama T, Kuroiwa H and Kuroiwa T (2003) Regulation of Brassica rapa chloroplast proliferation in vivo and in cultured leaf disks. Protoplasma 222: 139-148PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Shin-ya Miyagishima
    • 1
  • Tsuneyoshi Kuroiwa
    • 2
  1. 1.Department of Plant BiologyMichigan State UniversityEast LansingUSA
  2. 2.Department of Life Science, College of ScienceRikkyo (St. Paul's) UniversityToshima-kuJapan

Personalised recommendations