Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 23))

  • 2440 Accesses

The apicoplast is an essential organelle characteristic of the apicomplexan parasites. It harbors its own genome and it is believed to be a chloroplast-derived organelle that originated by secondary endosymbiosis. Here, we address the more relevant properties of this organelle, an evolutionary relict of a once fully-functional algal chloroplast. We address how its highly-reduced plastid genome replicates and segregates, and how it gets transcribed and translated. We also describe the particular metabolism of the apicoplast, limited to certain pathways, including fatty acid and lipid biosynthesis, the non-mevalonate isoprenoid synthesis pathway, the biosynthesis of iron-sulfur clusters, and the de novo synthesis of heme groups. These metabolic pathways are of relevance as a preferred target for anti-parasitic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L and Kapur V (2004) Com-plete genome sequence of the Apicomplexan, Cryptosporid-ium parvum. Science 304: 441-445

    PubMed  Google Scholar 

  • Adam Z and Clarke AK (2002) Cutting edge of chloroplast pro-teolysis. Trends Plant Sci 7: 451-456

    PubMed  Google Scholar 

  • Aravind L, Iyer LM, Wellems TE and Miller LH (2003) Plas-modium biology: genomic gleanings. Cell 115: 771-785

    PubMed  Google Scholar 

  • Archibald JM and Keeling PJ (2002) Recycled plastids: a “green movement” in eukaryotic evolution. Trends Genet 18: 577-584

    PubMed  Google Scholar 

  • Archibald JM and Keeling PJ (2003) Comparative genomics. Plant genomes: cyanobacterial genes revealed. Heredity 90: 2-3

    PubMed  Google Scholar 

  • Bahl A, Brunk B, Crabtree J, Fraunholz MJ, Gajria B, Grant GR, Ginsburg H, Gupta D, Kissinger JC, Labo P, Li L, Mailman MD, Milgram AJ, Pearson DS, Roos DS, Schug J, Stoeckert CJ Jr and Whetzel P (2003) PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computa-tional data. Nucleic Acids Res 31: 212-215

    PubMed  Google Scholar 

  • Bannister LH, Hopkins JM, Fowler RE, Krishna S and Mitchell GH (2000) A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol Today 16: 427-433

    PubMed  Google Scholar 

  • Beckers CJ, Roos DS, Donald RG, Luft BJ, Schwab JC, Cao Y and Joiner KA (1995) Inhibition of cytoplasmic and organellar protein synthesis in T. gondii. Implications for the target of macrolide antibiotics. J Clin Invest 95: 367-376

    PubMed  Google Scholar 

  • Beeson JG, Winstanley PA, McFadden GI and Brown GV (2001) New agents to combat malaria. Nat Med 7: 149-150

    PubMed  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G and Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783-795

    PubMed  Google Scholar 

  • Black MW and Boothroyd JC (2000) Lytic cycle of Toxoplasma gondii. Microbiol Mol Biol Rev 64: 607-623

    PubMed  Google Scholar 

  • Blanchard JL and Hicks JS (1999) The non-photosynthetic plas-tid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage. J Eukaryot Microbiol 46: 367-375

    PubMed  Google Scholar 

  • Bodyl A (1999) How are plastid proteins of the apicomplexan parasites imported? A hypothesis. Acta Protozool 38: 31-37

    Google Scholar 

  • Borst P, Overdulve JP, Weijers PJ, Fase-Fowler F and Van den Berg M (1984) DNA circles with cruciforms from Isospora (Toxoplasma) gondii. Biochim Biophys Acta 781: 100-111

    PubMed  Google Scholar 

  • Borza T, Popescu CE, and Lee RW (2005) Multiple metabolic roles for the nonphotosynthetic plastid of the green Alga Pro-totheca wickerhamii. Eukaryot Cell 4: 253-261

    PubMed  Google Scholar 

  • Bracchi-Ricard V, Nguyen KT, Zhou Y, Rajagopalan PTR, Chakrabarti D and Pei D (2001) Characterization of an eu-karyotic peptide deformylase from Plasmodium falciparum. Arch Biochem Biophys 396: 162-170

    PubMed  Google Scholar 

  • Bruce BD (2000) Chloroplast transit peptides: structure, function and evolution. Trends Cell Biol 10: 440-447

    PubMed  Google Scholar 

  • Brydges SD and Carruthers VB (2003) Mutation of an unusual mitochondrial targeting sequence of SODB2 produces multi-ple targeting fates in Toxoplasma gondii. J Cell Sci. 116: 4675-4685

    PubMed  Google Scholar 

  • Cai X, Fuller AL., McDougald LR and Zhu G (2003) Apicoplast genome of the coccidian Eimeria tenella. Gene 321: 39-46

    PubMed  Google Scholar 

  • Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A and Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901-912

    PubMed  Google Scholar 

  • Camps M, Arrizabalaga G and Boothroyd, JC (2002) An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Mol Microbiol 43: 1309-1318

    PubMed  Google Scholar 

  • Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quack-enbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR, Bergman LW, Vaidya AB, van Lin LH, Janse CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM, Hoffman SL, Gardner MJ and Carucci DJ (2002) Genome sequence and comparative analysis of the model ro-dent malaria parasite Plasmodium yoelli yoelli. Nature 419: 512-519

    PubMed  Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, Dinoflagellate, and Sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46: 347-366

    PubMed  Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 358: 109-133

    PubMed  Google Scholar 

  • Cavalier-Smith T and Beaton MJ (1999) The skeletal function of non-genic nuclear DNA: new evidence from ancient cell chimaeras. Genetica 106: 3-13

    PubMed  Google Scholar 

  • Chance M, Warhurst D, Baggaley V and Peters W (1972) Prepara-tion and characterisation of DNA from rodent malarias. Trans R Soc Trop Med Hyg 66: 3-4

    PubMed  Google Scholar 

  • Cheresh P, Harrison T, Fujioka H and Haldar K (2002). Targeting the malarial plastid via the parasitophorous vacuole. J Biol Chem 277: 16265-16277

    PubMed  Google Scholar 

  • Clough B, Strath M, Preiser P, Denny P and Wilson RJM (1997) Thiostrepton binds to malarial plastid rRNA. FEBS Lett 406: 123-125

    PubMed  Google Scholar 

  • Clough B, Rangachari K, Strath M, Preiser PR and Wilson RJM (1999) Antibiotic inhibitors of organellar protein synthesis in Plasmodium falciparum. Protist 150: 189-195

    PubMed  Google Scholar 

  • Coombs GH and M üller S (2002) Recent advances in the search for new anti-coccidial drugs. Int J Parasitol 32: 497-508

    PubMed  Google Scholar 

  • Creasey A, Mendis K, Carlton J, Williamson D, Wilson I and Carter R (1994) Maternal inheritance of extrachromosomal DNA in malaria parasites. Mol Biochem Parasitol 65: 95-98

    PubMed  Google Scholar 

  • Darius AK, Mehlhorn H and Heydorn AO (2004) Effects of toltrazuril and ponazuril on the fine structure and multiplica-tion of tachyzoites of the NC-1 strain of Neospora caninum (a synonym of Hammondia heydorni) in cell cultures. Parasitol Res 92: 453-458

    PubMed  Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154: S164-S177

    PubMed  Google Scholar 

  • DeRocher A, Hagen CB, Froehlich JE, Feagin JE and Parsons M (2000) Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J Cell Sci 113: 3969-3977

    PubMed  Google Scholar 

  • DeRocher A, Gilbert B, Feagin JE and Parsons M (2005) Dis-section of brefeldin A-sensitive and -insensitive steps in api-coplast protein targeting. J Cell Sci 118: 565-574

    PubMed  Google Scholar 

  • Derouin F (2001) Anti-toxoplasmosis drugs. Curr Opin Investig Drugs 2: 1368-1374

    PubMed  Google Scholar 

  • Dhanasekaran S, Chandra NR, Chandrasekhar Sagar BK, Rangarajan PN and Padmanaban G (2004) δ;-Aminolevulinic Acid Dehydrates from Plasmodium falciparum: indigenous versus imported. J Biol Chem 279: 6934-6942

    PubMed  Google Scholar 

  • Dieckmann-Schuppert AS, Bender S, Holder AA, Haldar K, Schwarz RT (1992) Labeling and initial characterization of polar lipids in cultures of Plasmodium falciparum. Parasitol Res 78: 416-422

    PubMed  Google Scholar 

  • Ding M, Clayton C and Soldati D (2000) Toxoplasma gondii catalase: are there peroxisomes in Toxoplasma? J Cell Sci 113: 2409-2419

    PubMed  Google Scholar 

  • Diniz JA, Silva EO, Lainson R, and de Souza W (2000) The fine structure of Garnia gonadati and its association with the host cell. Parasitol Res 86: 971-977

    PubMed  Google Scholar 

  • Docampo R, de Souza W, Miranda K, Rohloff P and Moreno SN (2005) Acidocalcisomes—conserved from bacteria to man. Nat Rev Microbiol 3: 251-261

    PubMed  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14: 307-311

    PubMed  Google Scholar 

  • Dore E, Frontali C, Forte T and Fratarcangeli S (1983) Further studies and electron microscopic characterization of Plasmod-ium berghei DNA. Mol Biochem Parasitol 8: 339-352

    PubMed  Google Scholar 

  • Dunn PP, Stephens PJ and Shirley MW (1998) Eimeria tenella: two species of extrachromosomal DNA revealed by pulsed-field gel electrophoresis. Parasitol Res 84: 272-275

    PubMed  Google Scholar 

  • Dupouy-Camet J (2004) New drugs for the treatment of human parasitic protozoa. Parasitologia. 46: 81-84.

    Google Scholar 

  • Dzierszinski F, Popescu O, Toursel C, Slomianny C, Yahiaoui B and Tomavo S (1999) The protozoan parasite Toxoplasma gondii expresses two functional plant-like glycolytic enzymes. Implications for evolutionary origin of apicomplexans. J Biol Chem 274: 24888-24895

    PubMed  Google Scholar 

  • Egea N and Lang-Unnasch N (1995) Phylogeny of the large extra-chromosomal DNA of organisms in the phylum Apicomplexa. J Eukaryot Microbiol 42: 679-684

    PubMed  Google Scholar 

  • Egea N and Lang-Unnasch N (1996) Phylogeny of the large extra-chromosomal DNA of organisms in the phylum Apicomplexa. J Eukaryot Microbiol 43: 158

    PubMed  Google Scholar 

  • Elabbadi N, Ancelin ML and Vial HJ (1997) Phospholipid metabolism of serine in Plasmodium-infected erythrocytes in-volves phosphatidylserine and direct serine decarboxylation. Biochem J 324: 435-445

    PubMed  Google Scholar 

  • Ellis JT, Morrison DA and Jeffries AC (1998) The phylum Api-complexa: an update on the molecular phylogeny. In: Coombs GH, Vickerman K, Sleigh MA, and Warren A (eds), Evolu-tionary Relationships among Protozoa, pp 255-274. Kluwer, Bostom, USA

    Google Scholar 

  • Ellis KE., Clough B, Saldanha JW and Wilson RJ (2001) Nifs and Sufs in malaria. Mol Microbiol 41: 973-981

    PubMed  Google Scholar 

  • Emanuelsson O and von Heijne G (2001) Prediction of organellar targeting signals. Biochim Biophys Acta 1541: 114-119

    PubMed  Google Scholar 

  • Escalante AA and Ayala FJ (1995) Evolutionary origin of Plas-modium and other Apicomplexa based on rRNA genes. Proc Natl Acad Sci USA 92: 5793-5797

    PubMed  Google Scholar 

  • Fagan TF and Hastings JW (2002) Phylogenetic analysis in-dicates multiple origins of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes in dinoflagellates. Mol Biol Evol 19: 1203-1207

    PubMed  Google Scholar 

  • Fast NM, Kissinger JC, Roos DS and Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common ori-gin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18: 418-426

    PubMed  Google Scholar 

  • Feagin JE (1994) The extrachromosomal DNAs of apicomplexan parasites. Annu Rev Microbiol 48: 81-104

    PubMed  Google Scholar 

  • Feagin JE (2000) Mitochondrial genome diversity in parasites. Int J Parasitol 30: 371-390

    PubMed  Google Scholar 

  • Feagin JE and Drew ME (1995) Plasmodium falciparum: alter-ations in organelle transcript abundance during the erythro-cytic cycle. Exp Parasitol 80: 430-440

    PubMed  Google Scholar 

  • Fichera ME and Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390: 407-409

    PubMed  Google Scholar 

  • Fichera ME, Bhopale MK and Roos DS (1995) In vitro assays elucidate peculiar kinetics of clindamycin action against Toxo-plasma gondii. Antimicrob Agents Chemother 39: 1530-1537

    PubMed  Google Scholar 

  • Fitzpatrick T, Ricken S, Lanzer M, Amrhein N, Macheroux P and Kappes B (2001) Subcellular localization and characterization of chorismate synthase in the apicomplexan Plasmodium fal-ciparum. Mol Microbiol 40: 65-75

    PubMed  Google Scholar 

  • Foth BJ and McFadden GI (2003) The apicoplast: a plastid in Plasmodium falciparum and other Apicomplexan parasites. Int Rev Cytol 224: 57-110

    PubMed  Google Scholar 

  • Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, Roos DS, Cowman AF and McFadden GI (2003) Dissecting api-coplast targeting in the malaria parasite Plasmodium falci-parum. Science 299: 705-708

    PubMed  Google Scholar 

  • Foth BJ, Stimmler LM, Handman E, Crabb BS, Hodder AN and McFadden, GI (2005) The malaria parasite Plasmodium falci-parum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Molecular Microbiology 55: 39-53

    PubMed  Google Scholar 

  • Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP and Gonz ález-Halphen D (2002) A green algal apicoplast ancestor. Science 298: 2155

    PubMed  Google Scholar 

  • Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP and Gonz ález-Halphen D (2003) Reply to com-ment on “A green algal apicoplast ancestor.” Science 301: 49

    Google Scholar 

  • Gajadhar AA, Marquardt WC, Hall R, Gunderson J, Ariztia-Carmona E and Sogin ML (1991) Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplex-ans, dinoflagellates, and ciliates. Mol Biochem Parasitol 45: 147-154

    PubMed  Google Scholar 

  • Gardner MJ, Bates PA, Ling IT, Moore DJ, McCready S, Gunasekera MB, Wilson RJ and Williamson DH (1988) Mi-tochondrial DNA of the human malarial parasite Plasmodium falciparum. Mol Biochem Parasitol 31: 11-18

    PubMed  Google Scholar 

  • Gardner MJ, Williamson DH and Wilson RJ (1991a) A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol Biochem Parasitol 44: 115-123

    Google Scholar 

  • Gardner MJ, Feagin JE, Moore DJ, Spencer DF, Gray MW, Williamson DH and Wilson RJ (1991b) Organization and ex-pression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. Mol Biochem Parasitol 48: 77-88

    Google Scholar 

  • Gardner MJ, Feagin JE, Moore DJ, Rangachari K, Williamson DH and Wilson RJ (1993) Sequence and organization of large subunit rRNA genes from the extrachromosomal 35 kb circular DNA of the malaria parasite Plasmodium falciparum. Nucleic Acids Res 21: 1067-1071

    PubMed  Google Scholar 

  • Gardner MJ, Goldman N, Barnett P, Moore PW, Rangachari K, Strath M, Whyte A, Williamson DH and Wilson RJ (1994) Phylogenetic analysis of the rpoB gene from the plastid-like DNA of Plasmodium falciparum. Mol Biochem Parasitol 66: 221-231

    PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, New-bold C, Davis RW, Fraser CM and Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falci-parum. Nature 419: 498-511

    PubMed  Google Scholar 

  • Gerold P and Schwarz RT (2001) Biosynthesis of glycosphin-golipids de-novo by the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 112: 29-37

    PubMed  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56: 2882-2889

    Google Scholar 

  • Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361: 193-208

    PubMed  Google Scholar 

  • Giglione C, Serero A, Pierre M, Boisson B and Meinnel T (2000) Identification of eukaryotic peptide deformylases re-veals universality of N-terminal protein processing mechanisms. EMBO J 19: 5916-5929

    PubMed  Google Scholar 

  • Gleeson MT (2000) The plastid in Apicomplexa: what use is it? Int J Parasitol 30: 1053-1070

    PubMed  Google Scholar 

  • Gleeson MT and Johnson AM (1999) Physical characterization of the plastid DNA in Neospora caninum. Int J Parasitol 29: 1563-1573

    PubMed  Google Scholar 

  • Gockel G and Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151: 347-351

    PubMed  Google Scholar 

  • Gozalbes R, Brun-Pascaud M, Garcia-Domenech R, Galvez J, Girard PM, Doucet JP and Derouin F (2000) Anti-toxoplasma activities of 24 quinolones and fluoroquinolones in vitro: prediction of activity by molecular topology and virtual compu-tational techniques. Antimicrob Agents Chemother 44: 2771-2776

    PubMed  Google Scholar 

  • Gornicki P (2003) Apicoplast fatty acid biosynthesis as a tar-get for medical intervention in apicomplexan parasites. Int J Parasitol 33: 885-896

    PubMed  Google Scholar 

  • Gowda DC, Gupta P, Davidson EA (1997) Glycosylphos-phatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage Plasmodium falciparum. J Biol Chem 272: 6428-6439

    PubMed  Google Scholar 

  • Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9: 678-687

    PubMed  Google Scholar 

  • Gray MW, Burger G and Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2: 1018.1-1018.5

    Google Scholar 

  • Gutteridge W, Trigg P and Williamson D (1971) Properties of DNA from some malarial parasites. Parasitology 62: 209-219

    PubMed  Google Scholar 

  • Hackett JD, Yoon HS, Bento Soares M, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T and Bhattacharya (2004) Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr Biol 14: 213-218

    PubMed  Google Scholar 

  • Hannaert V, Saavedra E, Duffieux F, Szikora JP, Rigden DJ, Michels PA and Opperdoes FR (2003) Plant-like traits asso-ciated with metabolism of Trypanosoma parasites. Proc Natl Acad Sci USA 100: 1067-1071

    PubMed  Google Scholar 

  • Harb OS, Chatterjee B, Fraunholz MJ, Crawford MJ, Nishi M and Roos DS (2004) Multiple functionally redundant signals me-diate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. Eukaryot Cell 3: 663-674

    PubMed  Google Scholar 

  • Harper JT and Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20: 1730-1735

    PubMed  Google Scholar 

  • He CY, Shaw MK, Pletcher CH, Striepen B, Tilney LG and Roos DS (2001a) A plastid segregation defect in the protozoan par-asite Toxoplasma gondii. EMBO J 20: 330-339

    Google Scholar 

  • He CY, Striepen B, Pletcher CH, Murray JM and Roos DS (2001b) Targeting and processing of nuclear-encoded api-coplast proteins in plastid segregation mutants of Toxoplasma gondii. J Biol Chem 276: 28436-28442

    Google Scholar 

  • Henze K, Badr A, Wettern M, Cerff R and Martin W (1995) A nuclear gene of eubacterial origin in Euglena gracilis re-flects cryptic endosymbioses during protist evolution. Proc Natl Acad Sci USA 92: 9122-9126

    PubMed  Google Scholar 

  • Hopkins J, Fowler R, Krishna S, Wilson I, Mitchell G and Bannister L (1999) The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. Protist 150: 283-295

    PubMed  Google Scholar 

  • Howe CJ (1992) Plastid origin of an extrachromosomal DNA molecule from Plasmodium, the causative agent of malaria. J Theor Biol 158: 199-205

    PubMed  Google Scholar 

  • Huang J, Mullapudi N, Sicheritz-Ponten T and Kissinger JC (2004) A first glimpse into the pattern and scale of gene transfer in the Apicomplexa. Int J Parasitol 34: 265-274

    PubMed  Google Scholar 

  • Huang J, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, and Kissinger JC (2004) Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol. 5: R88

    PubMed  Google Scholar 

  • Jelenska J, Crawford MJ, Harb OS, Zuther E, Hazelkorn R, Roos DS, Gornicki P (2001) Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii. Proc Natl Acad Sci USA 98: 2723-2728

    PubMed  Google Scholar 

  • Jelenska J, Sirikhachornkit A, Haselkorn R and Gornicki P (2002) The carboxyltransferase activity of the apicoplast acetyl-CoA carboxylase of Toxoplasma gondii is the target of aryloxyphenoxypropionate inhibitors. J Biol Chem 277: 23208-23215

    PubMed  Google Scholar 

  • Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Turbachova I, Eberl M, Zeidler J, Lichtenthaler HK, Soldati D and Beck E (1999) Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285: 1573-1576

    PubMed  Google Scholar 

  • Kaasch AJ and Joiner KA (2000) Targeting and subcellular local-ization of Toxoplasma gondii catalase. Identification of perox-isomes in an apicomplexan parasite. J Biol Chem 275: 1112-1118

    PubMed  Google Scholar 

  • Khan SA (2000) Plasmid rolling-circle replication: recent devel-opments. Mol Microbiol 37: 477-484

    PubMed  Google Scholar 

  • Kilejian A (1975) Circular mitochondrial DNA from the avian malarial parasite Plasmodium lophurae. Biochim Biophys Acta 390: 276-284

    PubMed  Google Scholar 

  • Kilejian A (1991) Sphaerical bodies. Parasitol Today 7: 309

    PubMed  Google Scholar 

  • Kissinger JC, Brunk BP, Crabtree J, Fraunholz MJ, Gajria B, Milgram AJ, Pearson DS, Schug J, Bahl A, Diskin SJ, Ginsburg H, Grant GR, Gupta D, Labo P, Li L, Mailman MD, McWeeney SK, Whetzel P, Stoeckert CJ and Roos DS (2002) The Plasmodium genome database. Nature 419: 490-492

    PubMed  Google Scholar 

  • Kissinger JC, Gajria B, Li L, Paulsen IT and Roos DS (2003) ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Res 31: 234-236

    PubMed  Google Scholar 

  • Knauf U and Hachtel W (2002) The genes encoding subunits of ATP synthase are conserved in the reduced plastid genome of the heterotrophic alga Prototheca wickerhamii. Mol Genet Genom 267: 492-497

    Google Scholar 

  • K öhler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJ, Palmer JD and Roos DS (1997) A plastid of probable green algal origin in Apicomplexan parasites. Science 275: 1485-1489

    Google Scholar 

  • Kolodner RD and Tewari KK (1975) Chloroplast DNA from higher plants replicates by both the Cairns and the rolling circle mechanism. Nature 256: 708-711

    PubMed  Google Scholar 

  • Khor V, Yowell C, Dame JB and Rowe TC (2005) Expression and characterization of the ATP-binding domain of a malarial Plasmodium vivax gene homologous to the B-subunit of the bacterial topoisomerase DNA gyrase. Mol Biochem Parasitol 140: 107-117

    PubMed  Google Scholar 

  • Kroth P and Strotmann H (1999) Diatom plastids: secondary endocyctobiosis, plastid genome and protein import. Physiol Plant 107: 136-141

    Google Scholar 

  • Lang-Unnasch N and Aiello DP (1999) Sequence evidence for an altered genetic code in the Neospora caninum plastid. Int J Parasitol 29: 1557-1562

    PubMed  Google Scholar 

  • Lang-Unnasch N, Reith ME, Munholland J and Barta JR (1998) Plastids are widespread and ancient in parasites of the phylum Apicomplexa. Int J Parasitol 28: 1743-1754

    PubMed  Google Scholar 

  • Law AE, Mullineaux CW, Hirst EM, Saldanha J and Wilson RJ (2000) Bacterial orthologues indicate the malarial plastid gene ycf24 is essential. Protist 151: 317-327

    PubMed  Google Scholar 

  • Leander BS, Clopton RE and Keeling PJ (2003) Phylogeny of gregarines (Apicomplexa) as inferred from small-subunit rDNA and beta-tubulin. Int J Syst Evol Microbiol 53: 345-354

    PubMed  Google Scholar 

  • Lu M and Draper DE (1995) On the role of rRNA tertiary struc-ture in recognition of ribosomal protein L11 and thiostrepton. Nucleic Acids Res 23: 3426-3433

    PubMed  Google Scholar 

  • Ludwig M and Gibbs SP (1985) DNA is present in the nucleo-morph of cryptomonads: further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127: 9-20

    Google Scholar 

  • Marchesini N, Luo S, Rodrigues CO, Moreno SN and Docampo R (2000) Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 347: 243-253

    PubMed  Google Scholar 

  • Mar échal E (1997) Lipid synthesis and metabolism in the plastid envelope. Physiol Plant 100: 65-77

    Google Scholar 

  • Mar échal E and Cesbron-Delauw MF (2001) The apicoplast: a new member of the plastid family. Trends Plant Sci 6: 200-205

    Google Scholar 

  • Mar échal E, Azzouz N, de Macedo CS, Block MA, Feagin JE, Schwarz RT and Joyard J (2002) Synthesis of chloroplast galactolipids in apicomplexan parasites. Eukaryot Cell 1: 653-656

    Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M and Penny D (2002) Evolu-tionary analysis of Arabidopsis, cyanobacterial., and chloro-plast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246-12251

    PubMed  Google Scholar 

  • Matsuzaki M, Kikuchi T, Kita K, Kojima S and Kuroiwa T (2001) Large amounts of apicoplast nucleoid DNA and its segregation in Toxoplasma gondii. Protoplasma 218: 180-191

    PubMed  Google Scholar 

  • Maul JE, Lilly JW, Cui L, de Pamphilis CW, Miller W, Harris EH and Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14: 2659-2679

    PubMed  Google Scholar 

  • McConkey GA, Rogers MJ and McCutchan TF (1997) Inhibi-tion of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J Biol Chem 272: 2046-2049

    PubMed  Google Scholar 

  • McFadden GI and Roos DS (1999) Apicomplexan plastids as drug targets. Trends Microbiol 7: 328-333

    PubMed  Google Scholar 

  • McFadden GI and Waller RF (1997) Plastids in parasites of hu-mans. Bioessays 19: 1033-1040

    PubMed  Google Scholar 

  • McFadden GI, Gilson PR, Hofmann CJ, Adcock GJ and Maier UG (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci USA 91: 3690-3694

    PubMed  Google Scholar 

  • McFadden GI, Reith ME, Munholland J and Lang-Unnasch N (1996) Plastid in human parasites. Nature 381: 482

    PubMed  Google Scholar 

  • McIntosh MT, Drozdowicz YM, Laroiya K, Rea PA and Vaidya AB (2001) Two classes of plant-like vacuolar-type H(+)-pyrophosphatases in malaria parasites. Mol Biochem Parasitol 114: 183-195

    PubMed  Google Scholar 

  • McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG, Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, and Rice DW (2001) Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 31: 109-113.

    PubMed  Google Scholar 

  • Meinnel T (2000) Peptide deformylase of eukaryotic protists: a target for new antiparasitic agents? Parasitol Today 16: 165-168

    PubMed  Google Scholar 

  • Miyagishima SY, Nishida K and Kuroiwa T (2003) An evolu-tionary puzzle: chloroplast and mitochondrial division rings. Trends Plant Sci 8: 432-438

    PubMed  Google Scholar 

  • Morden CW and Sherwood AR (2002) Continued evolutionary surprises among dinoflagellates. Proc Nat Acad Sci USA 99: 11558-11560

    PubMed  Google Scholar 

  • Moreira D and Lopez-Garcia P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Micro-biol 10: 31-38

    Google Scholar 

  • Moreira D and Philippe H (2001) Sure facts and open questions about the origin and evolution of photosynthetic plastids. Res Microbiol 152: 771-780

    PubMed  Google Scholar 

  • Neuhaus HE and Emes MJ (2000) Non-photosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51: 111-140

    PubMed  Google Scholar 

  • Neupert W and Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3: 555-565

    PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S and von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10: 1-6

    PubMed  Google Scholar 

  • Novick RP (1998) Contrasting lifestyles of rolling-circle phages and plasmids. Trends Biochem Sci 23: 434-438

    PubMed  Google Scholar 

  • Obornik M, Jirku M, Slapeta JR, Modry D, Koudela B and Lukes J (2002a) Notes on coccidian phylogeny, based on the api-coplast small subunit ribosomal DNA. Parasitol Res 88: 360-363

    Google Scholar 

  • Obornik M, Van de Peer Y, Hypsa V, Frickey T, Slapeta JR, Meyer A and Lukes J (2002b) Phylogenetic analyses suggest lateral gene transfer from the mitochondrion to the apicoplast. Gene 285: 109-118

    Google Scholar 

  • Ohta N, Sato N, Nozaki H and Kuroiwa T (1997) Analysis of the cluster of ribosomal protein genes in the plastid genome of a unicellular red alga Cyanidioschyzon merolae: translocation of the str cluster as an early event in the rhodophyte-chromophyte lineage of plastid evolution. J Mol Evol 45: 688-695

    PubMed  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39: 1-9

    Google Scholar 

  • Pandini V, Caprini G, Thomsen N, Aliverti A, Seeber F and Zanetti G (2002) Ferredoxin-NADP+ reductase and ferredoxin of the protozoan parasite Toxoplasma gondii interact produc-tively in vitro and in vivo. J Biol Chem 277: 48463-48471

    PubMed  Google Scholar 

  • Patterson D (1999) The diversity of eukaryotes. Am Nat 154: 96-124

    Google Scholar 

  • P érez-Martínez X, Antaramian A, Vazquez-Acevedo M, Funes S, Tolkunova E, d’Alayer J, Claros MG, Davidson E, King MP and Gonz ález-Halphen D (2001) Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem 276: 11302-11309

    Google Scholar 

  • Perozzo R, Kuo M, Sidhu AS, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA and Sacchettini JC (2002) Structural elu-cidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277: 13106-13114

    PubMed  Google Scholar 

  • Preiser P, Williamson DH and Wilson RJ (1995) tRNA genes transcribed from the plastid-like DNA of Plasmodium falci-parum. Nucleic Acids Res 23: 4329-4336

    PubMed  Google Scholar 

  • Preiser PR, Wilson RJ, Moore PW, McCready S, Hajibagheri MA, Blight KJ, Strath M and Williamson DH (1996) Recom-bination associated with replication of malarial mitochondrial DNA. Embo J 15: 684-693

    PubMed  Google Scholar 

  • Puiu D, Enomoto S, Buck GA, Abrahamsen MS and Kissinger JC (2004) CryptoDB: the Cryptosporidium genome resource. Nucleic Acids Res 32: D329-D331

    PubMed  Google Scholar 

  • Ralph SA. (2005) Strange organelles-Plasmodium mitochondria lack a pyruvate dehydrogenase complex. Mol Microbiol. 55: 1-4

    PubMed  Google Scholar 

  • Ralph SA, D’Ombrain MC and McFadden GI (2001) The api-coplast as an antimalarial drug target. Drug Resist Updat 4: 145-151

    PubMed  Google Scholar 

  • Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, and McFadden GI (2004a) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2: 203-216.

    Google Scholar 

  • Ralph SA, Foth BJ, Hall N and McFadden GI (2004b) Evolution-ary pressures on apicoplast transit peptides. Mol Biol Evol. 21: 2183-2194

    Google Scholar 

  • Ridley RG (1999) Planting the seeds of new antimalarial drugs. Science 285: 1502-1503

    PubMed  Google Scholar 

  • Roberts F, Roberts CW, Johnson JJ, Kyle DE, Krell T, Coggins JR, Coombs GH, Milhous WK, Tzipori S, Ferguson DJ, Chakrabarti D and McLeod R (1998) Evidence for the shiki-mate pathway in apicomplexan parasites. Nature 393: 801-805

    PubMed  Google Scholar 

  • Roberts CW, Roberts F, Lyons RE, Kirisits MJ, Mui EJ, Finnerty J, Johnson JJ, Ferguson DJ, Coggins JR, Krell T, Coombs GH, Milhous WK, Kyle DE, Tzipori S, Barnwell J, Dame JB, Carlton J and McLeod R (2002) The shikimate path-way and its branches in apicomplexan parasites. J Infect Dis 185: S25-S36

    PubMed  Google Scholar 

  • Robibaro B, Hoppe HC, Yang M, Coppens I, Ngo HM, Stedman TT, Paprotka K and Joiner KA (2001) Endocytosis in different lifestyles of protozoan parasitism: role in nutrient uptake with special reference to Toxoplasma gondii. Int J Parasitol 31: 1343-1353

    PubMed  Google Scholar 

  • Rogers MJ, Cundliffe E and McCutchan TF (1998) The antibiotic micrococcin is a potent inhibitor of growth and protein syn-thesis in the malaria parasite. Antimicrob Agents Chemother 42: 715-716

    PubMed  Google Scholar 

  • Roos DS (1999) The apicoplast as a potential therapeutic tar-get in Toxoplasma and other apicomplexan parasites: some additional thoughts. Parasitol Today 15: 41

    PubMed  Google Scholar 

  • Roos DS, Crawford MJ, Donald RG, Kissinger JC, Klimczak LJ and Striepen B (1999) Origin, targeting, and function of the apicomplexan plastid. Curr Opin Microbiol 2: 426-432

    PubMed  Google Scholar 

  • Roos DS, Crawford MJ, Donald RG, Fraunholz M, Harb OS, He CY, Kissinger JC, Shaw MK and Striepen B (2002) Mining the Plasmodium genome database to define organellar function: what does the apicoplast do? Philos Trans R Soc Lond B Biol Sci 357: 35-46.

    PubMed  Google Scholar 

  • Roy A, Cox RA, Williamson DH and Wilson RJ (1999) Protein synthesis in the plastid of Plasmodium falciparum. Protist 150: 183-188

    PubMed  Google Scholar 

  • Ruiz FA, Marchesini N, Seufferheld M, Govindjee and Docampo R (2001) The polyphosphate bodies of Chlamy-domonas reinhardtii possess a proton-pumping pyrophos-phatase and are similar to acidocalcisomes. J Biol Chem 276: 46196-46203

    PubMed  Google Scholar 

  • Ryall K, Harper JT and Keeling PJ (2003) Plastid-derived Type II fatty acid biosynthetic enzymes in chromists. Gene 313: 139-148

    PubMed  Google Scholar 

  • Ryan PC, Lu M and Draper DE (1991) Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol 221: 1257-1268

    PubMed  Google Scholar 

  • Saldarriaga JF, Taylor FJ, Keeling PJ and Cavalier-Smith T (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53: 204-213

    PubMed  Google Scholar 

  • Sato S, Tews I and Wilson RJM (2000) Impact of a plastid-bearing endocytobiont on apicomplexan genomes. Int J Para-sitol 30: 427-439

    Google Scholar 

  • Scholtyseck E and Piekarski G (1965) Elektronmikroscopische untersuchungen an merozoiten von Eimerien (Eimeria per-forans und E. steidae) und Toxoplasma gondii zur systematis-che stellung von T. gondii. Z Parasiten 26: 93-115

    Google Scholar 

  • Seeber F (2002) Biogenesis of iron-sulphur clusters in amito-chondriate and apicomplexan protists. Int J Parasitol 32: 1207-1217

    PubMed  Google Scholar 

  • Seeber F (2003) Biosynthetic pathways of plastid-derived or-ganelles as potential drug targets against parasitic apicom-plexa. Curr Drug Targets Immune Endocr Metabol Disord 3: 99-109

    PubMed  Google Scholar 

  • Siddall ME (1992) Hohlzylinders. Parasitol Today 8: 90-91

    PubMed  Google Scholar 

  • Siddall ME, Reece KS, Nerad TA and Burreson EM (2001) Molecular determination of the phylogenetic position of a species in the genus Colpodella (Alveolata). Am Mus Novit 3314: 1-10

    Google Scholar 

  • Singh D, Chaubey S and Habib S (2003) Replication of the Plasmodium falciparum apicoplast DNA initiates within the inverted repeat region. Mol Biochem Parasitol 126: 9-14

    PubMed  Google Scholar 

  • Singh D, Kumar A, Ram EVSR and Habib S (2005) Multiple replication origins within the inverted repeat region of the Plasmodium falciparum apicoplast genome are differentially activated. Mol Biochem Parasitol 139: 99-106

    PubMed  Google Scholar 

  • Smeijsters LJ, Zijlstra NM, de Vries E, Franssen FF, Janse CJ and Overdulve JP (1994) The effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl) adenine on nuclear and organellar DNA synthesis in erythrocytic schizogony in malaria. Mol Biochem Parasitol 67: 115-124

    PubMed  Google Scholar 

  • Soldati D (1999) The apicoplast as a potential therapeutic target in and other apicomplexan parasites. Parasitol Today 15: 5-7

    PubMed  Google Scholar 

  • Soll J and Schleiff E (2004) Plant cell biology: protein import into chloroplasts. Nat Rev Mol Cell Biol 5: 198-208

    PubMed  Google Scholar 

  • Stoebe B and Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15: 344-347

    PubMed  Google Scholar 

  • Strath M, Scott-Finnigan T, Gardner M, Williamson D and Wilson I (1993) Antimalarial activity of rifampicin in vitro and in rodent models. Trans R Soc Trop Med Hyg 87: 211-216

    PubMed  Google Scholar 

  • Striepen B, Crawford MJ, Shaw MK, Tilney LG, Seeber F and Roos DS (2000) The plastid of Toxoplasma gondii is divided by association with the centrosomes. J Cell Biol 151: 1423-1434

    PubMed  Google Scholar 

  • Sullivan M, Li J, Kumar S, Rogers MJ and McCutchan TF (2000) Effects of interruption of apicoplast function on malaria infec-tion, development, and transmission. Mol Biochem Parasitol 109: 17-23

    PubMed  Google Scholar 

  • Surolia N and Padmanaban G (1992) de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun 187: 744-750

    PubMed  Google Scholar 

  • Surolia N and Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP re-ductase of Plasmodium falciparum. Nat Med 7: 167-173

    PubMed  Google Scholar 

  • Surolia N, Ramachandra Rao SP and Surolia A (2002) Paradigm shifts in malaria parasite biochemistry and anti-malarial chemotherapy. Bioessays 24: 192-196

    PubMed  Google Scholar 

  • Surzycki SJ (1969) Genetic functions of the chloroplast of Chlamydomonas reinhardtii: effect of rifampin on chloroplast DNA-dependent RNA polymerase. Proc Natl Acad Sci USA 63: 1327-1334

    PubMed  Google Scholar 

  • Thomsen-Zieger N, Schachtner J and Seeber F (2003) Apicom-plexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Lett 547: 80-86

    PubMed  Google Scholar 

  • Touze JE, Fourcade L, Pradines B, Hovette P, Paule P and Heno P (2002) Mechanism of action of antimalarials. Value of com-bined atovaquone/proguanil. Med Trop (Mars) 62: 219-224

    Google Scholar 

  • Vaidya AB and Arasu P (1987) Tandemly arranged gene clusters of malarial parasites that are highly conserved and transcribed. Mol Biochem Parasitol 22: 249-257

    PubMed  Google Scholar 

  • Vaidya AB, Akella R and Suplick K (1989) Sequences similar to genes for two mitochondrial proteins and portions of ribo-somal RNA in a tandemly arrayed 6-kilobase-pair DNA of a malarial parasite. Mol Biochem Parasitol 35: 97-108

    PubMed  Google Scholar 

  • van Dooren GG, Waller RF, Joiner KA, Roos DS and McFad-den GI (2000) Traffic jams: protein transport in Plasmodium falciparum. Parasitol Today 16: 421-427

    PubMed  Google Scholar 

  • van Dooren GG, Schwartzbach SD, Osafune T and McFadden GI (2001) Translocation of proteins across the multiple mem-branes of complex plastids. Biochim Biophys Acta 1541: 34-53

    PubMed  Google Scholar 

  • van Dooren GG, Su V, D’Ombrain MC and McFadden GI (2002) Processing of an apicoplast leader sequence in Plasmodium falciparum and the identification of a putative leader cleavage enzyme. J Biol Chem 277: 23612-23619

    PubMed  Google Scholar 

  • Varadharajan S, Sagar BK, Rangarajan PN, and Padmanaban G (2004) Localization of ferrochelatase in Plasmodium falci-parum. Biochem J 384: 429-436

    PubMed  Google Scholar 

  • Vial HJ (2000) Isoprenoid biosynthesis and drug targeting in the Apicomplexa. Parasitol Today 16: 140-141

    PubMed  Google Scholar 

  • Vivier E and Desportes I (1990) Phylum Apicomplexa. In: Mar-gulis L, Corliss JO, Melkonian M and Chapman DJ (eds), Handbook of Protoctista, pp 549-573. Jones and Bartlett, Boston

    Google Scholar 

  • Vollmer M, Thomsen N, Wiek S and Seeber F (2001) Api-complexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. J Biol Chem 276: 5483-5490

    PubMed  Google Scholar 

  • Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS and Mc-Fadden GI (1998) Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 95: 12352-12357

    PubMed  Google Scholar 

  • Waller RF, Reed MB, Cowman AF and McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. Embo J 19: 1794-1802

    PubMed  Google Scholar 

  • Waller RF, Ralph SA, Reed MB, Su V, Douglas JD, Minnikin DE, Cowman AF, Besra GS, and McFadden GI (2003a) A type II pathway for fatty acid biosynthesis presents drug targets in Plasmodium falciparum. Antimicrob Agents Chemother 47: 297-301

    Google Scholar 

  • Waller RF, Keeling PJ, van Dooren GG and McFadden GI (2003b) Comment on “A green algal apicoplast ancestor.” Science 301: 49

    Google Scholar 

  • Waegemann K and Soll J (1996) Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem. 271: 6545-6554

    PubMed  Google Scholar 

  • Weissig V, Vetro-Widenhouse TS and Rowe TC (1997) Topoi-somerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell Biol 16: 1483-1492

    PubMed  Google Scholar 

  • Williams BA and Keeling PJ (2003) Cryptic organelles in para-sitic protists and fungi. Adv Parasitol 54: 9-68

    PubMed  Google Scholar 

  • Williamson DH, Wilson RJ, Bates PA, McCready S, Perler F and Qiang BU (1985) Nuclear and mitochondrial DNA of the primate malarial parasite Plasmodium knowlesi. Mol Biochem Parasitol 14: 199-209

    PubMed  Google Scholar 

  • Williamson DH, Gardner MJ, Preiser P, Moore DJ, Rangachari K and Wilson RJ (1994) The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet 243: 249-252

    PubMed  Google Scholar 

  • Williamson DH, Denny PW, Moore PW, Sato S, McCready S and Wilson RJ (2001) The in vivo conformation of the plastid DNA of Toxoplasma gondii: implications for replication. J Mol Biol 306: 159-168

    PubMed  Google Scholar 

  • Williamson DH, Preiser PR, Moore PW, McCready S, Strath M and Wilson RJ (2002) The plastid DNA of the malaria parasite Plasmodium falciparum is replicated by two mechanisms. Mol Microbiol 45: 533-542

    PubMed  Google Scholar 

  • Wilson RJM (1991) Reply to “Sphaerical bodies” Parasitol Today 7: 309

    Google Scholar 

  • Wilson RJM (2002) Progress with parasite plastids. J Mol Biol 319: 257-274

    PubMed  Google Scholar 

  • Wilson RJM and Williamson DH (1997) Extrachromosomal DNA in the Apicomplexa. Microbiol Mol Biol Rev 61: 1-16

    PubMed  Google Scholar 

  • Wilson RJM, Williamson DH and Preiser P (1994) Malaria and other Apicomplexans: the “plant” connection. Infect Agents Dis 3: 29-37

    PubMed  Google Scholar 

  • Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW and Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261: 155-172

    PubMed  Google Scholar 

  • Wilson RJM, Rangachari K, Saldanha JW, Rickman L, Buxton RS and Eccleston JF (2003) Parasite plastids: maintenance and functions. Philos Trans R Soc Lond B Biol Sci 358: 155-162; discussion 162-164

    PubMed  Google Scholar 

  • Wolfe KH, Morden CW and Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosyn-thetic parasitic plant. Proc Natl Acad Sci USA 89: 10648-10652

    PubMed  Google Scholar 

  • Wolters J (1991) The troublesome parasites- molecular and morphological evidence that Apicomplexa belong to the dinoflagellate-ciliate clade. Biosystems 25: 75-83

    PubMed  Google Scholar 

  • Wrenger C and Muller S (2004) The human malaria parasite Plasmodium falciparum has distinct organelle-specific lipoy-lation pathways. Mol Microbiol. 53:103-113

    PubMed  Google Scholar 

  • Yung S and Lang-Unnasch N (1999) Targeting of a nuclear encoded protein to the apicoplast of Toxoplasma gondii. J Eukaryot Microbiol 46: 79S-80S

    PubMed  Google Scholar 

  • Zagnitko O, Jelenska J, Tevzadze G, Haselkorn R and Gornicki P (2001) An isoleucine/leucine residue in the carboxyltrans-ferase domain of acetyl-CoA carboxylase is critical for inter-action with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc Natl Acad Sci USA 98: 6617-6622

    PubMed  Google Scholar 

  • Zuegge J, Ralph S, Schmuker M, McFadden GI and Schneider G (2001) Deciphering apicoplast targeting signals-feature ex-traction from nuclear-encoded precursors of Plasmodium fal-ciparum apicoplast proteins. Gene 280: 19-26

    PubMed  Google Scholar 

  • Zhang Z, Green BR and Cavalier-Smith T (1999) Single gene cir-cles in dinoflagellate chloroplast genomes. Nature 400: 155-159

    PubMed  Google Scholar 

  • Zhang Z, Green BR and Cavalier-Smith T (2000) Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: A possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51: 26-40

    PubMed  Google Scholar 

  • Zhu G, Marchewka MJ and Keithly JS (2000a) Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146: 315-321

    Google Scholar 

  • Zhu G, Marchewka MJ, Woods KM, Upton SJ and Keithly JS (2000b) Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum. Mol Biochem Parasitol 105: 253-260

    Google Scholar 

  • Zuther E, Johnson JJ, Haselkorn R, McLeod R and Gor-nicki P (1999) Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc Natl Acad Sci USA. 96: 13387-13392

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Funes, S., Pérez-Martínez, X., Reyes-Prieto, A.á., González-Halphen, D. (2007). The Apicoplast. In: Wise, R.R., Hoober, J.K. (eds) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4061-0_24

Download citation

Publish with us

Policies and ethics