Advertisement

Sulfur Metabolism in Plastids

  • Elizabeth A. H. Pilon-Smits
  • Marinus Pilon
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 23)

Sulfur is an essential element for plant primary metabolism as a structural component of proteins and lipids, antioxidants, regulatory molecules, metal-binding molecules and cofactors/coenzymes. The various steps involved in the reduction of sulfate and its assimilation into cysteine happen predominantly or exclusively in plastids. Cysteine holds a central position in S metabolism and is used for the biosynthesis of a variety of other reduced S compounds including methionine, S-adenosylmethionine, glutathione and phytochelatins, the coenzymes thiamine, biotin, lipoic acid and Coenzyme-A, the Molybdenum cofactor and Fe-S clusters. In this chapter we will give an overview of S metabolism in higher plants, focusing on the role of plastids. The regulation of S metabolism is discussed, as well as the involvement of S metabolic pathways in metabolism of other oxyanions. We conclude with an overview of results from genetic engineering of S pathway enzymes.

Keywords

Lipoic Acid Sulfur Metabolism Sulfate Transporter Sulfur Assimilation Sulfate Permease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir R, Hacham Y and Galili G (2002) Cystathionine-γ-synthase and threonine synthase operate in concert to regulate carbon flow towards methionine in plants. Trends Plant Sci 7: 153-156PubMedCrossRefGoogle Scholar
  2. Ananvoranich S, Varin L, Gulich P and Ibrahim RK (1994) Cloning and regulation of flavonol 3-sulfotransferase in cell-suspension cultures of Flaveria bidentis. Plant Physiol 106: 485-491PubMedCrossRefGoogle Scholar
  3. Aono M, Kubo A, Saji H, Tanaka K and Kondo N (1993) En-hanced tolerance to photooxidative stress of transgenic Nico-tiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34: 129-135Google Scholar
  4. Axelsen KB and Palmgren MG (2001) Inventory of the super-family of P-type ion pumps in Arabidopsis. Plant Physiol 126: 696-706PubMedCrossRefGoogle Scholar
  5. Bartlem D, Lambein I, Okamoto T, Itaya A, Uda Y, Kijima F, Tamaki Y, Nambara E and Naito S (2000) Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. Plant Physiol 123: 101-110PubMedCrossRefGoogle Scholar
  6. Beinert H (2000) A tribute to sulfur. Eur J Biochem 267: 5657-5664PubMedCrossRefGoogle Scholar
  7. Beinert H, Holm RH and Munck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277: 653-659PubMedCrossRefGoogle Scholar
  8. Blake-Kalff MMA, Harrison KR, Hawkesford MJ, Zhao FJ and McGrath SP (1998) Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol 118: 1337-1344PubMedCrossRefGoogle Scholar
  9. Blaszczyk A, Brodzik R and Sirko A (1999) Increased resistance to oxidative stress in transgenic tobacco plants over expressing bacterial serine acetyltransferase Plant J 20: 237-243PubMedCrossRefGoogle Scholar
  10. Boeck A, Forschhammer K, Heider J and Baron C (1991) Seleno-protein synthesis: an expansion of the genetic code. Trends Biochem Sci 16: 463-467CrossRefGoogle Scholar
  11. Bogdanova N and Hell R (1997) Cysteine synthesis in plants. Protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11: 251-262PubMedCrossRefGoogle Scholar
  12. Bork C, Schwenn JD and Hell R (1998) Isolation and charac-terization of a gene for assimilatory sulfite reductase from Arabidopsis thaliana. Gene 212: 147-153PubMedCrossRefGoogle Scholar
  13. Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen T-L, Gage DA and Hanson AD (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11: 1485-1497PubMedCrossRefGoogle Scholar
  14. Braakman I, Helenius J and Helenius A (1992) Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356: 260-262PubMedCrossRefGoogle Scholar
  15. Buchanan BB, Gruissem WG and Jones RL (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Biology, Rockville, MDGoogle Scholar
  16. Buchanan BB, Sch ürmann P, Wolosiuk RA and Jacquot J-P (2002) The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res 73: 215-222PubMedCrossRefGoogle Scholar
  17. Byers M, Franklin J and Smith SJ (1987) The nitrogen and sulphur nutrition of wheat and its effect on the composition and baking quality of the grain. Aspects Appl Biol 15: 337-344Google Scholar
  18. Chiba Y, Ishikawa M, Kijima F, Tyson RH, Kim J, Yamamoto A, Nambara E, Leustek T, Wallsgrove R and Naito S (1999) Ev-idence for autoregulation of cystathionine-γ-synthase mRNA stability in Arabidopsis. Science 286: 1371-1374PubMedCrossRefGoogle Scholar
  19. Cobbett SC (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123: 825-832PubMedCrossRefGoogle Scholar
  20. Cobbett SC, May MJ, Howden R and Rolls B (1998) The glutathione-deficient cadmium sensitive mutant, cad2-1 of Arabidopsis thaliana is deficient in γ-glutamylcysteine syn-thetase. Plant J 16: 73-78PubMedCrossRefGoogle Scholar
  21. Curien G, Job D, Douce R and Dumas R (1998) Al-losteric activation of Arabidopsis threonine synthase by S-adenosylmethionine. Biochemistry 37: 13212-13221PubMedCrossRefGoogle Scholar
  22. Dacey JWH, King GM and Wakeham SG (1987) Factors con-trolling emission of dimethylsulfide from salt marshes. Nature 330: 643-645CrossRefGoogle Scholar
  23. Davies JP, Yildiz F and Grossman AR (1994) Mutants of Chlamy-domonas with aberrant responses to sulfur deprivation. Plant Cell 6: 53-63PubMedCrossRefGoogle Scholar
  24. Davies JP and Grossman AR (1998) Responses to deficiencies in macronutrients. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, pp 613-635. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  25. Davies JP, Yildiz F and Grossman AR (1999) Sac3, an SNF1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell 11: 1179-1190PubMedCrossRefGoogle Scholar
  26. de Kok LJ and Stulen I (1993) Role of glutathione in plants under oxidative stress. In: de Kok LJ, Stulen I, Rennenberg H, Brunold C and Rauser WE (eds) Sulfur Nutrition and Sulfur Assimilation in Higher Plants, pp 125-138. SPB Academic Publishing, The Hague, The NetherlandsGoogle Scholar
  27. de Souza MP, Lytle CM, Mulholland MM, Otte ML and Terry N (2000a) Selenium assimilation and volatilization from dimethylselenoniopropionate by Indian mustard. Plant Physiol 122: 1281-1288CrossRefGoogle Scholar
  28. deSouza MP, Pilon-Smits EAH and Terry N (2000b) The phys-iology and biochemistry of selenium volatilization by plants. In: Ensley BD and Raskin I (eds) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, pp 171-190. Wiley & Sons, New YorkGoogle Scholar
  29. Droux M, Ruffet ML, Douce R and Job D (1998) Interactions be-tween serine acetyltransferase and O-acetylserine(thiol)lyase in higher plants—structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255: 235-245PubMedCrossRefGoogle Scholar
  30. Ernst WHO (1990) Ecological aspects of sulfur metabolism. In: de Kok LJ, Stulen I, Rennenberg H, Brunold C and Rauser WE (eds) Sulfur Nutrition and Sulfur Assimilation in Higher Plants, pp 131-144. SPB Academic Publishing, The Hague, The NetherlandsGoogle Scholar
  31. Foyer CH and Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21-25CrossRefGoogle Scholar
  32. Foyer CH, Souriau N, Perret S, Lelandais M, Kunert K-J, Pruvost C and Jouanin L (1995) Overexpression of glutathione reduc-tase but not glutathione synthetase leads to increases in an-tioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047-1057PubMedCrossRefGoogle Scholar
  33. Fu L-H, Wang X-F, Eyal Y, She Y-M, Donald LJ, Standing KG and Ben-Hayyim G (2002) A selenoprotein in the plant king-dom: mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii glu-tathione peroxidase. J Biol Chem 277: 25983-25991PubMedCrossRefGoogle Scholar
  34. Gakiere B, Ravanel S, Droux M, Douce R and Job D (2000) Mechanisms to account for maintenance of the soluble me-thionine pool in transgenic Arabidopsis plants expressing an-tisense cystathionine-γ-synthase cDNA. C R Acad Sci Serie III Sci Vie 323: 841-851Google Scholar
  35. Gilbert SM, Clarkson DT, Cambridge M, Lambers H and Hawkesford M (1997) Sulfate deprivation has an early ef-fect on the content of ribulose-1,5-bisphosphate carboxy-lase/oxygenase and photosynthesis in young leaves of wheat. Plant Physiol 115: 1231-1239PubMedGoogle Scholar
  36. Giovanelli J, Mudd SH and Datko AH (1985) In vivo regulation of de novo methionine biosynthesis in a higher plant (Lemna). Plant Physiol 77: 450-455PubMedCrossRefGoogle Scholar
  37. Gong J-M, Lee DA and Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Ara-bidopsis. Proc Natl Acad Sci USA 100: 10118-10123PubMedCrossRefGoogle Scholar
  38. Grill E, Loffler S, Winnacker EL and Zenk MH (1989) Phy-tochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthetase). Proc Natl Acad Sci USA 86: 6838-6842PubMedCrossRefGoogle Scholar
  39. Grossman AR and Takahashi H (2001) Micronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Annu Rev Plant Physiol Plant Mol Biol 52: 163-210PubMedCrossRefGoogle Scholar
  40. Gutierrez-Marcos JF, Roberts MA, Campbell EI and Wray JL (1996) Three members of a novel small gene family from Arabidopsis thaliana able to complement functionally an Es-cherichia coli mutant defective in PAPS reductase activity en-code proteins with a thioredoxin-like domain and “APS reduc-tase” activity. Proc Natl Acad Sci USA 93: 13377-13382PubMedCrossRefGoogle Scholar
  41. Hacham Y, Avraham T and Amir R (2002) The N-terminal region of Arabidopsis cystathionine-γ-synthase plays an important regulatory role in methionine metabolism. Plant Physiol 128: 454-462PubMedCrossRefGoogle Scholar
  42. Hampp R and Ziegler I (1977) Sulfate and sulfite translocation via the phosphate translocator of the inner envelope membrane of chloroplasts. Planta 137: 309-312CrossRefGoogle Scholar
  43. Harwood JL and Nicholls RE (1979) The plant sulpholipid—a major component of the sulfur cycle. Biochem Soc Trans 7: 440-447PubMedGoogle Scholar
  44. Hatfield D, Choi IS, Mischke S and Owens LD (1992) Selenocysteinyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladum virens, a filamentous fungus. Biochem Biophys Res Commun 184: 254-259PubMedCrossRefGoogle Scholar
  45. Hawkesford MJ (2003) Transporter gene families in plants: the sulphate transporter gene family—redundancy or specializa-tion? Physiol Plant 117: 155-163CrossRefGoogle Scholar
  46. Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202: 138-148PubMedCrossRefGoogle Scholar
  47. Hoeft RG and Walsch LM (1975) Effect of carrier, rate, and time of application of S on the yield, and S and N content of alfalfa. Agron J 67: 427-430Google Scholar
  48. Inba K, Fujiwara T, Hayashi H, Chino M, Komeda Y and Naito S (1994) Isolation of Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine: temporal and spatial pat-terns of soluble methionine accumulation. Plant Physiol 104: 881-887Google Scholar
  49. James F, Paquet L, Sparace SA, Gage DA and Hanson AD (1995) Evidence implicating dimethyl sulfoniopropionaldehyde as an intermediate in dimethylsulfoniopropionate biosynthesis. Plant Physiol 108: 1439-1448PubMedCrossRefGoogle Scholar
  50. Kim H, Hirai MY, Hayashi H, Chino M, Naito S and Fujiwara T (1999) O-acetyl-L-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Planta 209: 282-289PubMedCrossRefGoogle Scholar
  51. Kim J and Leustek T (2000) Repression of cystathionine-γ-synthase in Arabidopsis thaliana produces partial methionine auxotrophy and developmental abnormalities. Plant Sci 151: 9-18CrossRefGoogle Scholar
  52. Kim J, Lee M, Chalam R, Martin MN, Leustek T and Boerjan W (2002) Constitutive overexpression of cystathionine-γ-synthase in Arabidopsis leads to accumulation of soluble me-thionine and S-methylmethionine. Plant Physiol 128: 95-107PubMedCrossRefGoogle Scholar
  53. Kelly DP, Wood AP, Jordan SL, Padden AN, Gorlenko VM and Dubinina GA (1994) Biological production and consumption of gaseous organic sulfur compounds. Biochem Soc Trans 22: 1011-1015PubMedGoogle Scholar
  54. Kocsis MG, Nolte KD, Rhodes D, Shen T-L, Gage DA and Hanson AD (1998) Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora. Evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates. Plant Physiol 117: 272-281CrossRefGoogle Scholar
  55. Koprivova A, Suter M, op den Camp R, Brunold C and Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Ara-bidopsis. Plant Physiol 122: 737-746PubMedCrossRefGoogle Scholar
  56. Krueger RJ and Siegel LM (1982) Spinach siroheme enzymes: isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reduc-tase. Biochemistry 21: 2892-2904PubMedCrossRefGoogle Scholar
  57. Kunert KJ and Foyer C (1993) Thiol/disulfide exchange in plants. In: de Kok LJ, Stulen I, Rennenberg H, Brunold C and Rauser WE (eds) Sulfur Nutrition and Sulfur Assimilation in Higher Plants, pp 139-151. SPB Academic Publishing, The Hague, The NetherlandsGoogle Scholar
  58. Kupke T, Hernandez-Acosta P and Culianez-Macia FA (2003) 4 -Phosphopantetheine and coenzyme A biosynthesis in plants. J Biol Chem 278: 38229-38237PubMedCrossRefGoogle Scholar
  59. Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R and Van Montagu M (2001) A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13: 89-100PubMedCrossRefGoogle Scholar
  60. Lacomme C and Roby D (1996) Molecular cloning of a sul-fotransferase in Arabidopsis thaliana and regulation during development and in response to infection with pathogenic bac-teria. Plant Mol Biol 30: 995-1008PubMedCrossRefGoogle Scholar
  61. Lacourciere GM and Stadtman TC (1998) The NIFS protein can function as a selenide delivery protein in the biosynthesis of selenophosphate. J Biol Chem 273: 30921-30926PubMedCrossRefGoogle Scholar
  62. Lacourciere GM, Mihara H, Kurihara T, Yoshimura T, Esaki N and Stadtman TC (2000) Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of se-lenophosphate. J Biol Chem 275: 23769-23773PubMedCrossRefGoogle Scholar
  63. Lamoureux GL and Rusness DG (1993) Glutathione in the metabolism and detoxification of xenobiotics in plants. In: de Kok LJ, Stulen I, Rennenberg H, Brunold C and Rauser WE (eds) Sulfur Nutrition and Sulfur Assimilation in Higher Plants, pp 221-237. SPB Academic Publishing, The Hague, The NetherlandsGoogle Scholar
  64. Lancaster JR, Vega JM, Kamin H, Orme-Johnson NR, Orme-Johnson WH, Krueger WH and Siegel LM (1979) Identifi-cation of the iron-sulfur center of spinach ferredoxin nitrite reductase as a tetranuclear center, and preliminary EPR stud-ies of mechanism. J Biol Chem 254: 1268-1272PubMedGoogle Scholar
  65. Lappartient A and Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and sulfate uptake in intact canola. Plant Physiol 111: 147-157PubMedGoogle Scholar
  66. Lappartient AG, Vidmar JJ, Leustek T, Glass ADM and Touraine B (1999) Inter-organ signaling in plant: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compounds. Plant J 18: 89-95PubMedCrossRefGoogle Scholar
  67. LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang C-Y, Tagmount A, deSouza MP, Neuhierl B, Bock A, Caruso JA and Terry N (2004) Overex-pression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumu-lation. Plant Physiol 135: 377-383PubMedCrossRefGoogle Scholar
  68. Leimkuhler S and Rajagopalan KV (2001) A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J Biol Chem 276: 22024-22031PubMedCrossRefGoogle Scholar
  69. Leon S, Touraine B, Briat JF and Lobreaux S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366: 557-564PubMedCrossRefGoogle Scholar
  70. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC and Denarie J (1990) Symbiotic host specificity of Rhi-zobium meliloti is determined by a sulphated and acy-lated glucosamine oligosaccharide signal. Nature 344: 781-784PubMedCrossRefGoogle Scholar
  71. Leustek T (1996) Molecular genetics of sulfate assimilation in plants. Physiol Plant 97: 411-419CrossRefGoogle Scholar
  72. Leustek T, Martin MN, Bick J-A and Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molec-ular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51: 141-165PubMedCrossRefGoogle Scholar
  73. Maimann S, Hoefgen R and Hesse H (2001) Enhanced cystathionine-β-lyase activity in transgenic potato plants does not force metabolite flow towards methionine. Planta 214: 163-170PubMedCrossRefGoogle Scholar
  74. Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 127-158PubMedCrossRefGoogle Scholar
  75. Marschner H (1995) Mineral Nutrition of Higher Plants. Acada-demic Press, LondonGoogle Scholar
  76. Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T and Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global ef-fects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132: 597-605PubMedCrossRefGoogle Scholar
  77. Mihara H and Esaki N (2002) Bacterial cysteine desulfurases: their function and mechanisms. Appl Microbiol Biotechnol 60: 21-23Google Scholar
  78. Mihara H, Maeda M, Fujii T, Kurihara T, Hata Y and Esaki N (1999) A nifS-like gene, csdB, encodes an Escherichia coli counterpart of mammalian selenocysteine lyase. Gene cloning, purification, characterization and preliminary x-ray crystallographic studies. J Biol Chem 274: 14768-14772PubMedCrossRefGoogle Scholar
  79. Mihara H, Kurihara T, Yoshimura T and Esaki N (2000) Ki-netic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions. J Biochem 127: 559-567PubMedGoogle Scholar
  80. Mihara H, Kato S, Lacourciere G, Stadtman TC, Kennedy RAJD, Kurihara T, Tokumoto U, Takahashi Y and Esaki N (2002) The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydro-genase H. Proc Natl Acad Sci USA 99: 6679-6683PubMedCrossRefGoogle Scholar
  81. Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D and Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupine (Lupinus angustifolium L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci USA 94: 8393-8398PubMedCrossRefGoogle Scholar
  82. Mourioux G and Douce R (1979) Transport du sulfate a travers la double membrane limitante ou enveloppe des chloroplasts d’epinard. Biochimie 61: 1283-1292PubMedCrossRefGoogle Scholar
  83. Neuenschwander U, Suter M and Brunold C (1991) Regulation of sulfate assimilation by light and O-acetyl-L-serine in Lemna minor L. Plant Physiol 97: 253-258PubMedCrossRefGoogle Scholar
  84. Neuhierl B and B öck A (1996) On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisulcatus. Eur J Biochem 239: 235-238PubMedCrossRefGoogle Scholar
  85. Neuhierl B, Thanbichler M, Lottspeich F and B öck A (1999) A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolution-ary relation. J Biol Chem 274: 5407-5414PubMedCrossRefGoogle Scholar
  86. Nocito FF, Pirovano L, Cocucci M and Sacchi A (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129: 1872-1879PubMedCrossRefGoogle Scholar
  87. Noctor G, Strohm M, Jouanin L, Kunert K-J, Foyer CH and Rennenberg (1996) Synthesis of glutathione in leaves of trans-genic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol 112: 1071-1078PubMedGoogle Scholar
  88. Noctor G, Arisi ACM, Jouanin L and Foyer CH (1998a) Ma-nipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118: 471-482CrossRefGoogle Scholar
  89. Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H and Foyer CH (1998b) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623-647CrossRefGoogle Scholar
  90. Noji M, Inoue K, Kimura N, Gouda A and Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine-acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273: 32739-32745PubMedCrossRefGoogle Scholar
  91. Novoselov SV, Rao M, Onoshko NV, Zhi H, Kryukov GV, Xiang Y, Weeks DP, Hatfield DL and Gladyshev VN (2002) Se-lenoproteins and selenocysteine insertion system in the model plant system, Chlamydomonas reinhardtii. EMBO J 21:3681-3693PubMedCrossRefGoogle Scholar
  92. Pickering IJ, Prince RC, George MJ, Smith RD, George GN and Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122: 1171-1177PubMedCrossRefGoogle Scholar
  93. Pilon M, America T, van’t Hof R, de Kruijff B, and Weisbeek P (1995) Protein translocation into chloroplasts. In: Rothman SS (ed) Advances in Molecular and Cell Biology, Vol 1: Mem-brane Protein Transport, pp 229-255. JAI Press, Greenwich, CTGoogle Scholar
  94. Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N and Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis thaliana express-ing a mouse selenocysteine lyase. Plant Physiol 131: 1250-1257PubMedCrossRefGoogle Scholar
  95. Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T and Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119: 123-132PubMedCrossRefGoogle Scholar
  96. Pilon-Smits EAH, Garifullina GF, Abdel-Ghany SE, Kato S-I, Mihara H, Hale KL, Burkhead JL, Esaki N, Kurihara T, Pilon M (2002) Characterization of a NifS-like Chloroplast Protein from Arabidopsis thaliana—Implications for Its Role in Sulfur and Selenium Metabolism. Plant Physiology 130: 1309-1318PubMedCrossRefGoogle Scholar
  97. Poulton JE and Moller BL (1993) Glucosinolates. In: Lea PJ (ed) Enzymes of Secondary Metabolism, pp 209-237. Academic Press, LondonGoogle Scholar
  98. Prior A, Uhrig JF, Heins L, Wiesmann A, Lillig CH Stoltze C, Soll J and Schwenn JD (1999) Structural and kinetic properties of adenylylsulfate reductase from Catheranthus roseus cell cultures. Biochem Biophys Acta 1430: 25-38PubMedGoogle Scholar
  99. Ravanel S, Gakiere B, Job D and Douce R (1998a) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95: 7805-7812CrossRefGoogle Scholar
  100. Ravanel S, Gakiere B, Job D and Douce R (1998b) Cystathionine-γ-synthase from Arabidopsis thaliana: purification and bio-chemical characterization of the recombinant enzyme overex- pressed in Escherichia coli. Biochem J 331: 639-648Google Scholar
  101. Raven JA, Evans MCW and Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2 -evolving or-ganisms. Photosynth Res 60: 111-149CrossRefGoogle Scholar
  102. Rea PA (1999) MRP subfamily ABC transporters from plants and yeast. J Exp Bot 50: 895-913CrossRefGoogle Scholar
  103. Rennenberg H (1982) Glutathione metabolism and possible bi-ological role in higher plants. Phytochem 21: 2771-2781CrossRefGoogle Scholar
  104. Rennenberg H and Lamoureux GL (1990) Physiological pro-cesses that modulate the concentration of glutathione in plant cells. In: de Kok LJ, Stulen I, Rennenberg H, Brunold C and Rauser WE (eds) Sulfur Nutrition and Sulfur Assimilation in Higher Plants, pp 53-65. SPB Academic, Publishing, The Hague, The NetherlandsGoogle Scholar
  105. Reuveny Z, Dougall DK and Trinity PM (1980) Regulatory coupling of nitrate and sulfate assimilation pathways in cul-tured tobacco cells. Proc Natl Acad Sci USA 77: 6670-6672PubMedCrossRefGoogle Scholar
  106. Rotte C and Leustek T (2000) Differential subcellular localiza-tion and expression of ATP sulfurylase and 5 -adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124: 715-724PubMedCrossRefGoogle Scholar
  107. Sabeh F, Wright T and Norton SJ (1993) Purification and char-acterization of a glutathione peroxidase from the Aloe vera plant. Enzyme Prot 47: 92-98Google Scholar
  108. Saito K, Kurosawa M, Tatsuguchi K, Takagi Y and Murakoshi I (1994) Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine(thiol)-lyase]. Plant Physiol 106: 887-895PubMedCrossRefGoogle Scholar
  109. Sanda S, Leustek T, Theisen MJ, Garavito RM and Benning C (2001) Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J Biol Chem 276: 3941-3946PubMedCrossRefGoogle Scholar
  110. Schmidt A (1986) Regulation of sulfur metabolism in plants. Prog Bot 48: 133-150Google Scholar
  111. Schmutz D and Brunold C (1984) Intercellular localization of as-similatory sulfate reduction in leaves of Zea mays and Triticum aestivum. Plant Physiol 74: 866-870PubMedCrossRefGoogle Scholar
  112. Schroppel-Meier G and Kaiser WM (1988) Ion homeostasis in chloroplasts under salinity and mineral deficiency. II. Solute distribution between chloroplasts and extrachloroplastic space under excess or deficiency of sulfate, phosphate, or magne-sium. Plant Physiol 87: 828-832PubMedCrossRefGoogle Scholar
  113. Schwenn JD and Depka B (1977) Assimilatory sulfate reduction by chloroplasts: the regulatory influence of adenosine-mono-and adenosine-diphosphate. Z Naturforschung 32C: 792-797Google Scholar
  114. Sendl P (1995) Allium sativum and Allium ursinum. Part 1: chem-istry, analysis, history, botany. Phytomedicine 4: 323-339Google Scholar
  115. Setya A, Murillo M and Leustek T (1996) Sulfate reduc-tion in higher plants: molecular evidence for a novel 5 -adenylylsulfate reductase. Proc Natl Acad Sci USA 93:13383-13388PubMedCrossRefGoogle Scholar
  116. Shibagaki N, Rose A, McDermott J, Fujiwara T, Hayashi H, Yoneyama T and Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29: 475-486PubMedCrossRefGoogle Scholar
  117. Smith IK (1975) Sulfate transport in cultured tobacco cells. Plant Physiol 55: 303-307PubMedCrossRefGoogle Scholar
  118. Smith FW, Ealing PM, Hawkesford MJ and Clarkson DT (1995) Plant members of a family of sulfate transporters reveal func-tional subtypes. Proc Natl Acad Sci USA 92: 9373-9377PubMedCrossRefGoogle Scholar
  119. Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, van den Berg PJ, Belcher AR and Warrilow AG (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12: 875-884PubMedCrossRefGoogle Scholar
  120. Stadtman TC (1990) Selenium biochemistry. Annu Rev Biochem 59: 111-127PubMedCrossRefGoogle Scholar
  121. Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65: 83-100CrossRefGoogle Scholar
  122. Storozhenko S, Belles-Boix E, Babiychuk E, Herouart D, Davey MW, Slooten L, van Montagu M, Inze D and Kushnir S (2002) γ-Glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiol 128: 1109-1119PubMedCrossRefGoogle Scholar
  123. Suzuki A, Shirata Y, Ishida H, Chiba Y, Onouchi H and Naito S (2001) The first exon coding region of cystathionine-γ-synthase gene is necessary and sufficient for down regulation of its own mRNA accumulation in transgenic Arabidopsis thaliana. Plant Cell Physiol 42: 1174-1180PubMedCrossRefGoogle Scholar
  124. Tagmount A, Berken A and Terry N (2002) An essential role of S-adenosyl-L-methionine:L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to selenium-methyl-L-selenium-methionine, the pre-cursor of volatile selenium. Plant Physiol 130: 847-856PubMedCrossRefGoogle Scholar
  125. Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida Engler J, van Montagu M and Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94: 11102-11107PubMedCrossRefGoogle Scholar
  126. Takahashi H, Sasakura N, Kimura A, Watanabe A and Saito K (1999) Identification of two leaf-specific sulfate transporters in Arabidopsis (accession nos. AB012048 and AB004060). Plant Physiol 121: 686CrossRefGoogle Scholar
  127. Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ and Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23: 171-182PubMedCrossRefGoogle Scholar
  128. Tanaka H, Masuta C, Uehara K, Kataoka J, Koiwai A and Noma M (1997) Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-L-homocysteine hydrolase gene. Plant Mol Biol 35: 981-986PubMedCrossRefGoogle Scholar
  129. Thompson JF and Gering RK (1966) Biosynthesis of S-methylcysteine in radish leaves. Plant Physiol 41: 1301-1307PubMedCrossRefGoogle Scholar
  130. Thompson JP, Smith IK and Madison JT (1986) Sulfur metabolism in plants. In: Tabatabai MA (ed) Sulfur in Agricul-ture, Agronomy series No 27, pp 57-121. American Society of AgronomyGoogle Scholar
  131. Van Hoewyk D, Garifullina GF, Ackley AR, Abdel-Ghany SE, Marcus MA, Fakra S, Ishiyama K, Inoue E, Pilon M, Takahashi H, Pilon-Smits EAH (2005) Overexpression of AtCpNifS enhances selenium tolerance and accumulation in Arabidopsis. Plant Physiology, in pressGoogle Scholar
  132. van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N and Pilon-Smits EAH (2003) Overexpression of cystathionine-γ-synthase in Indian mustard enhances selenium volatilization. Planta 218: 71-78PubMedCrossRefGoogle Scholar
  133. Varin L, Chamberland H, Lafontaine JG and Richard M (1997) The enzyme involved in sulfation of the turgorin, gallic acid 4-O-(beta-D-glucopyranosyl-6-sulfate) is pulvini-localized in Mimosa pudica. Plant J 12: 831-837PubMedCrossRefGoogle Scholar
  134. Virtanen AI (1965) Studies on organic sulphur compounds and other labile substances in plants. Phytochemistry 4: 207-228CrossRefGoogle Scholar
  135. Wangeline AL, Burkhead JL, Hale KL, Lindblom S-D, Terry N, Pilon M and Pilon-Smits EAH (2004) Overexpression of ATP sulfurylase in Brassica juncea: Effects on toler-ance and accumulation of twelve metals. J Environ Qual 33: 54-60PubMedCrossRefGoogle Scholar
  136. Wilson LG and Bandurski RS (1958) Enzymatic reactions in-volving sulfate, sulfite, selenate and molybdate. J Biol Chem 233: 975-981PubMedGoogle Scholar
  137. Wilson LG, Bressan RA and Filner P (1978) Light dependent emission of H2 S from plants. Plant Physiol 61: 184-189PubMedCrossRefGoogle Scholar
  138. Wirtz M and Hell R (2003) Production of cysteine for bacte-rial and plant biotechnology: application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino Acids 24: 195-203PubMedGoogle Scholar
  139. Wood HG and Barden RE (1977) Biotin enzymes. Annu Rev Biochem 46: 385-413CrossRefGoogle Scholar
  140. Wykoff DD, Davies JP, Melis A and Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117: 129-139PubMedCrossRefGoogle Scholar
  141. Xiang C and Oliver DJ (1998) Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Ara-bidopsis. Plant Cell 10: 1539-1550PubMedCrossRefGoogle Scholar
  142. Yamaguchi Y, Nakamura T, Harada E, Koizumi N and Sano H (1999) Differential accumulation of transcripts encoding sul-fur assimilation enzymes upon sulfur and/or nitrogen depriva-tion in Arabidopsis thaliana. Biosci Biotechnol Biochem 63: 762-766PubMedCrossRefGoogle Scholar
  143. Yonikura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T and Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and non-photosynthetic organs of maize. Plant Physiol 122: 887-894CrossRefGoogle Scholar
  144. Yoshimoto N, Takahashi H, Smith FW, Yamaya T and Saito K (2002) Two distinct high-affinity sulfate transporters with dif-ferent inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29: 465-473PubMedCrossRefGoogle Scholar
  145. Youssefian S, Nakamura M and Sano H (1993) Tobacco plants transformed with the O-acetylserine(thiol) lyase gene of wheat are resistant to toxic levels of hydrogen sulphide gas. Plant J 4: 759-769PubMedCrossRefGoogle Scholar
  146. Yu B and Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36: 762-770PubMedCrossRefGoogle Scholar
  147. Zeh M, Casazza AP, Kreft O, Roessmer U, Bieberich K, Willmitzer L, Hoefgen R and Hesse H (2001) Antisense inhi-bition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiol 127: 791-802CrossRefGoogle Scholar
  148. Zhang M-Y, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK and Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134: 482-491PubMedCrossRefGoogle Scholar
  149. Zheng L, White RH, Cash VL, Jack RF and Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in met-allocluster biosynthesis. Proc Natl Acad Sci USA 90: 2754-2758PubMedCrossRefGoogle Scholar
  150. Zhou J and Goldsbrough PB (1994) Functional homologs of fungal matallothionein genes from Arabidopsis. Plant Cell 6: 875-884PubMedCrossRefGoogle Scholar
  151. Zhu YL, Pilon-Smits EAH, Jouanin L and Terry T (1999a) Over-expression of glutathione synthetase in Brassica juncea en-hances cadmium accumulation and tolerance. Plant Physiol 119: 73-79CrossRefGoogle Scholar
  152. Zhu YL, Pilon-Smits EAH, Tarun A, Weber SU, Jouanin L and Terry N (1999b) Cadmium tolerance and accumula-tion in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121: 1169-1177CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Elizabeth A. H. Pilon-Smits
    • 1
  • Marinus Pilon
    • 1
  1. 1.Biology DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations