Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 23))

Chlorophyll is the dominant pigment in a mature plant cell, whether in the leaf of a plant or in the abundant algal species. Chlorophyll is synthesized within the chloroplast from a plentiful precursor, the amino acid glutamate. From glutamate to the tetrapyrrole protoporphyrin IX, at which the pathway branches between chlorophyll and heme, the reactions occur in the plastid stroma and are catalyzed by soluble enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adamson HY, Hiller RG and Walmsley J (1997) Protochloro-phyllide reduction and greening in angiosperms-an evolu-tionary perspective. J Photochem Photobiol B:Biol 41: 201-221

    Article  CAS  Google Scholar 

  • Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bac-teria to gymnosperms. J Photochem Photobiol B:Biol 43: 87-100

    Article  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of NADPH:protochlorophyllide oxidore-ductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Phys-iol 108: 1505-1517

    Article  CAS  Google Scholar 

  • Armstrong GA, Apel K and R üdiger W (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci 5: 40-44

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H, Sohrt K and Soll J (2000) NADPH: protochloro-phyllide oxidoreductase uses the general import route into chloroplasts. Biol Chem 381: 1263-1267

    Article  PubMed  CAS  Google Scholar 

  • Aronsson H, Sundqvist C and Dahlin C (2003) POR hits the road: import and assembly of a plastid protein. Plant Mol Biol 51: 1-7

    Article  PubMed  CAS  Google Scholar 

  • Barnes SA, Nishizawa NK, Quaggio RB, Whitelam GC and Chua N-H (1996) Far-red light blocks greening of Arabidop-sis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell 8: 601-615

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photo-synth Res 60: 43-73

    Article  CAS  Google Scholar 

  • Belyaeva OB, Sundqvist C and Litvin FF (2000) Nonpigment components of the photochlorophyllide photoactive complex: studies of low-temperature blue-green fluorescence spectra. Memb Cell Biol 13: 337-345

    CAS  Google Scholar 

  • Block MA, Tewari AK, Albrieux C, Mar échal E and Joyard J (2002) The plant S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase is located in both en-velope and thylakoid chloroplast membranes. Eur J Biochem 269: 240-248

    Article  PubMed  CAS  Google Scholar 

  • Boddi B, Oravecz AR and Lehoczki E (1995) Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica 31: 411-420

    CAS  Google Scholar 

  • Bollivar DW (2003) Intermediate steps in chlorophyll biosyn-thesis. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 13, pp 49-70. Academic Press, San Diego.

    Google Scholar 

  • Bollivar DW and Beale SI (1995) Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts. Photosynth Res 43: 113-124

    Article  CAS  Google Scholar 

  • Bollivar DW and Beale SI (1996) The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase-characterization and partial purification from Chlamy-domonas reinhardtii and Synechocystis sp PCC 6803. Plant Physiol 112: 105-114

    PubMed  CAS  Google Scholar 

  • Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM and Bauer CE (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622-640

    Article  PubMed  CAS  Google Scholar 

  • Bougri O and Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differen-tially expressed in barley. Plant J 9: 867-878

    Article  PubMed  CAS  Google Scholar 

  • Burke DH, Hearst JE and Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Nat Acad Sci USA 90: 7134-7138

    Article  PubMed  CAS  Google Scholar 

  • Cahoon AB and Timko MP (2000) yellow-in-the-dark mutants of Chlamydomonas lack the CHLL subunit of light-independent protochlorophyllide reductase. Plant Cell 12: 559-568

    Article  PubMed  CAS  Google Scholar 

  • Chahdi MAO, Schoefs B and Franck F (1998) Isola-tion and characterization of photoactive complexes of NADPH:protochlorophyllide oxidoreductase from wheat. Planta 206: 673-680

    Article  CAS  Google Scholar 

  • Chekounova E, Voronetskaja V, Papenbrock J, Grimm B and Beck CF (2001) Characterization of Chlamydomonas mutants defective in the H-subunit of Mg-chelatase. Mol Gen Genet 266: 363-373.

    CAS  Google Scholar 

  • Confalonieri F and Duguet M (1995) A 200-amino acid ATPase module in search of a basic function. Bioessays 17: 639-650

    Article  PubMed  CAS  Google Scholar 

  • Coomber SA, Chaudhri M, Connor A, Britton G and Hunter CN (1990) Localized transposon Tn5 mutagenesis of the pho-tosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 4: 977-989

    Article  PubMed  CAS  Google Scholar 

  • Dahlin C, Aronsson H, Almkvist J and Sundqvist C (2000) Protochlorophyllide-independent import of two NADPH:Pchlide oxidoreductase proteins (PORA and PORB) from barley into isolated plastids. Physiol Plant 109: 298-303

    Article  CAS  Google Scholar 

  • Eckhardt U, Grimm B and H örtensteiner S (2004) Recent ad-vances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56: 1-14

    Article  PubMed  CAS  Google Scholar 

  • Espineda CE, Linford AS, Devine D and Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Nat Acad Sci USA 96: 10507-10511

    Article  PubMed  CAS  Google Scholar 

  • Falbel TG and Staehelin LA (1994) Characterization of a fam-ily of chlorophyll-deficient wheat (Triticum) and a barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol 104: 639-648

    Article  PubMed  CAS  Google Scholar 

  • Ferreira GC (1999) Ferrochelatase. Internatl J Biochem Cell Biol 31: 995-1000

    Article  CAS  Google Scholar 

  • Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD and Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311: 111-122

    Article  PubMed  CAS  Google Scholar 

  • Forreiter C and Apel K (1993) Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase poly-peptides in mountain pine (Pinus mugo). Planta 190: 536-545

    Article  PubMed  CAS  Google Scholar 

  • Forreiter C, Van Cleve B, Schmidt A and Apel K (1990) Evidence for a general light-dependent negative control of NADPH-protochlorophyllide oxidoreductase in angiosperms. Planta 183: 126-132

    Google Scholar 

  • Franck F, Sperling U, Frick G, Pochert B, Van Cleve B, Apel K and Armstrong GA (2000) Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B. Plant Physiol 124: 1678-1696

    Article  PubMed  CAS  Google Scholar 

  • Freeman TP, Duysen ME and Williams ND (1987) Effects of gene dosage on light harvesting chlorophyll accumulation, chloro-plast development, and photosynthesis in wheat. Can J Bot 65: 2118-2123

    Article  CAS  Google Scholar 

  • Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37: 411-421

    PubMed  CAS  Google Scholar 

  • Fujita Y and Bauer C (2003) The light-independent protochloro-phyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 12, pp 109-156. Academic Press, San Diego

    Google Scholar 

  • Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H, Ohta H and Takamiya K (2000) NADPH-protochlorophyllide ox-idoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynth Res 64: 147-154

    Article  PubMed  CAS  Google Scholar 

  • Gibson LC, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M and Hunter CN (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloro-plasts, and in situ localization of the transcript and protein. Plant Physiol 111: 61-71

    Article  PubMed  CAS  Google Scholar 

  • Gibson LC, Jensen PE and Hunter CN (1999) Magnesium chelatase from Rhodobacter sphaeroides: initial characteri-zation of the enzyme using purified subunits and evidence for a BchI-BchD complex. Biochem J 337: 243-251

    Article  PubMed  CAS  Google Scholar 

  • Gorchein A, Gibson LCD and Hunter CN (1993) Gene expres-sion and control of enzymes for synthesis of magnesium pro-toporphyrin monomethyl ester in Rhodobacter sphaeroides. Biochem Soc Trans 21: 201S

    PubMed  CAS  Google Scholar 

  • Granick S (1948) Protoporphyrin 9 as a precursor of chlorophyll. J Biol Chem 172: 717-727

    PubMed  CAS  Google Scholar 

  • Grimm B (2003) Regulatory mechanisms of eukaryotic tetrapyr-role biosynthesis. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 12, pp 1-32. Academic Press, San Diego

    Google Scholar 

  • Guo R, Luo M and Weinstein JD (1998) Magnesium chelatase from developing pea leaves. Plant Physiol 116: 605-615

    Article  CAS  Google Scholar 

  • Hansson A, Kannangara CG, von Wettstein D and Hansson M (1999) Molecular basis for semidominance of missense mu-tations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Nat Acad Sci USA 96: 1744-1749

    Article  PubMed  CAS  Google Scholar 

  • Hansson A, Willows RD, Roberts TH and Hansson M (2002) Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Nat Acad Sci USA 99: 13944-13949

    Article  PubMed  CAS  Google Scholar 

  • He ZH, Li JM, Sundqvist C and Timko MP (1994) Leaf devel-opmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L). Plant Physiol 106: 537-546

    PubMed  CAS  Google Scholar 

  • Hennig M, Grimm B, Jenny M, M üller R and Jansonius JN (1994) Crystallization and preliminary X-ray analysis of wild-type and K272A mutant glutamate 1-semialdehyde aminotrans-ferase from Synechococcus. J Mol Biol 242: 591-594

    Article  PubMed  CAS  Google Scholar 

  • Hennig M, Grimm B, Contestabile R, John RA and Jansonius JN (1997) Crystal structure of glutamate 1-semialdehyde amino-mutase: an α2 -dimeric vitamin-B6 -dependent enzyme with asymmetry in structure and active site reactivity. Proc Nat Acad Sci USA 94: 4866-4871

    Article  PubMed  CAS  Google Scholar 

  • Henningsen KW, Boynton JE and von Wettstein D (1993) Mutants at xantha and albina loci in relation to chloroplast biogenesis in barley (Hordeum vulgare L.). Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 42: 1-348

    Google Scholar 

  • Hinchigeri SB and Richards WR (1982) The reaction mecha-nism of S-adenosyl-L-methionine:magnesium protoporphyrin methyltransferase from Euglena gracilis. Photosynthetica 16: 554-560

    CAS  Google Scholar 

  • Hinchigeri SB, Chan JCS and Richards WR (1981) Purifica-tion of S-adenosyl-L-methionine: magnesium protoporphyrin methyltransferase by affinity chromatography. Photosynthet-ica 15: 351-359

    CAS  Google Scholar 

  • Holtorf H and Apel K (1996) Transcripts of the two NADPH protochlorophyllide oxidereductase genes PorA and PorB are differentially degraded in etiolated barley seedlings. Plant Mol Biol 31: 387-392

    Article  PubMed  CAS  Google Scholar 

  • Holtorf H, Reinbothe S, Reinbothe C, Bereza B and Apel K (1995) Two routes of chlorophyllide synthesis that are differ-entially regulated by light in barley (Hordeum vulgare L.). Proc Nat Acad Sci USA 92: 3254-3258

    Article  PubMed  CAS  Google Scholar 

  • Hudson A, Carpenter R, Doyle S and Coen ES (1993) Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J 12: 3711-3719

    PubMed  CAS  Google Scholar 

  • Ilag LL, Kumar AM and Soll D (1994) Light regulation of chloro-phyll biosynthesis at the level of 5- aminolevulinate formation in Arabidopsis. Plant Cell 6: 265-275

    Article  PubMed  CAS  Google Scholar 

  • Im CS and Beale SI (2000) Identification of possible signal trans-duction components mediating light induction of the Gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas reinhardtii. Planta 210: 999-1005

    Article  PubMed  CAS  Google Scholar 

  • Im CS, Matters GL and Beale SI (1996) Calcium and calmodulin are involved in blue light induction of theGsa gene for an early chlorophyll biosynthetic step in Chlamydomonas. Plant Cell 8: 2245-2253

    Article  PubMed  CAS  Google Scholar 

  • Jensen PE, Gibson LCD, Henningsen KW and Hunter CN (1996a) Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271: 16662-16667

    Article  CAS  Google Scholar 

  • Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stum-mann BM, Kannangara CG, von Wettstein D and Henningsen KW (1996b) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet 250: 383-394

    CAS  Google Scholar 

  • Jensen PE, Gibson LCD and Hunter CN (1998) Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocys-tis PCC6803. Biochem J 334: 335-344

    PubMed  CAS  Google Scholar 

  • Jordan PM (1994) The biosynthesis of uroporphyrinogen III: mechanism of action of porphobilinogen deaminase. In: Chad-wick DJ and Ackrill K (eds) The Biosynthesis of the Tetrapyr-role Pigments, Ciba Foundation Symposium 180, pp 70-89. John Wiley & Sons, Chichester

    Google Scholar 

  • Joyard J, Teyssier E, Mi ège C, Berny-Seigneurin D, Mar èchal E, Block MA, Dorne A-J, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope mem-branes. Plant Physiol 118: 715-723

    Article  PubMed  CAS  Google Scholar 

  • Kim C and Apel K (2004) Substrate-dependent and organ-specific chloroplast protein import in planta. Plant Cell 16: 88-98

    Article  PubMed  CAS  Google Scholar 

  • Kim JS and Rebeiz CA (1995) An improved analysis for determi-nation of monovinyl and divinyl protoporphyrin IX. J Photosci 2: 103-106

    CAS  Google Scholar 

  • Kim JS, Kolossov V and Rebeiz CA (1997) Chloroplast biogen-esis 76. Regulation of 4-vinyl reduction during conversion of divinyl Mg-protoporphyrin IX to monovinyl protochlorophyl-lide a is controlled by plastid membrane and stromal factors. Photosynthetica 34: 569-581

    Article  Google Scholar 

  • Klement H, Oster U and R üdiger W (2000) The influence of glyc-erol and chloroplast lipids on the spectral shifts of pigments associated with NADPH:protochlorophyllide oxidoreductase from Avena sativa L. FEBS Lett 480: 306-310

    Article  PubMed  CAS  Google Scholar 

  • Kolossov VL and Rebeiz CA (2003) Chloroplast biogenesis 88. Protochlorophyllide b occurs in green but not in etiolated plants. J Biol Chem 278: 49675-49678

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Redei GP and Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9: 1337-1346

    PubMed  CAS  Google Scholar 

  • Kovacheva S, Ryberg M and Sundqvist C (2000) ADP/ATP and protein phosphorylation dependence of phototransformable protochlorophyllide in isolated etioplast membranes. Photo-synth Res 64: 127-136

    Article  CAS  Google Scholar 

  • Kuroda H, Masuda T, Ohta H, Shioi Y and Takamiya K (1995) Light-enhanced gene expression of NADPH-protochlorophyllide oxidoreductase in cucumber. Biochem Biophys Res Commun 210: 310-316

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Masuda T, Fusada N, Ohta H and Takamiya K (2000) Expression of NADPH-protochlorophyllide oxidoreductase gene in fully green leaves of cucumber. Plant Cell Physiol 41: 226-229

    PubMed  CAS  Google Scholar 

  • Kuroda H, Masuda T, Fusada N, Ohta H and Takamiya K (2001) Cytokinin-induced transcriptional activation of NADPH-protochlorophyllide oxidoreductase gene in cucumber. J Plant Res 114: 1-7

    Article  CAS  Google Scholar 

  • Kusnetsov V, Herrmann RG, Kulaeva ON and Oelmuller R (1998) Cytokinin stimulates and abscisic acid inhibits green-ing of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidore-ductase. Mol Gen Genet 259: 21-28

    PubMed  CAS  Google Scholar 

  • Lake V and Willows RD (2003) Rapid extraction of RNA and analysis of transcript levels in Chlamydomonas reinhardtii us-ing real-time RT-PCR: magnesium chelatase chlH, chlD and chlI gene expression. Photosynth Res 77: 69-76

    Article  PubMed  CAS  Google Scholar 

  • Lake V, Olsson U, Willows RD and Hansson M (2004) AT-Pase activity of magnesium chelatase subunit I is required to maintain subunit D in vivo. Eur J Biochem 271: 2182-2188

    Article  PubMed  CAS  Google Scholar 

  • Larkin RM, Alonso JM, Ecker JR and Chory J (2003) Gun4, a regulator of chlorophyll synthesis and intracellular signalling. Science 299: 902-906

    Article  PubMed  CAS  Google Scholar 

  • Lebedev N and Timko MP (1998) Protochlorophyllide photore-duction. Photosynth Res 58: 5-23

    Article  CAS  Google Scholar 

  • Lenti K, Fodor F and Boddi B (2002) Mercury inhibits the activ-ity of the NADPH:protochlorophyllide oxidoreductase (POR). Photosynthetica 40: 145-151

    Article  CAS  Google Scholar 

  • Li J and Timko MP (1996) The pc-1 phenotype of Chlamy-domonas reinhardtii results from a deletion mutation in the nu-clear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol Biol 30: 15-37

    Article  PubMed  CAS  Google Scholar 

  • Li J, Goldschmidt-Clermont M and Timko MP (1993) Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5: 1817-1829

    Article  PubMed  CAS  Google Scholar 

  • Lidholm J and Gustafsson P (1991) Homologues of the green algal gidA gene and the liverwort frxC gene are present on the chloroplast genomes of conifers. Plant Mol Biol 17: 787-798

    Article  PubMed  CAS  Google Scholar 

  • Liu XQ, Xu H and Huang C (1993) Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol 23: 297-308

    Article  PubMed  CAS  Google Scholar 

  • Marrison JL, Schunmann PHD, Ougham HJ and Leech RM (1996) Subcellular visualization of gene transcripts encod-ing key proteins of the chlorophyll accumulation process in developing chloroplasts. Plant Physiol 110: 1089-1096

    PubMed  CAS  Google Scholar 

  • Mascia P (1978) An analysis of precursors accumulated by several chlorophyll biosynthetic mutants of maize. Mol Gen Genet 161: 237-244

    Article  CAS  Google Scholar 

  • Masuda T, Fusada N, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H and Takamiya K (2002) Identification of two differen-tially regulated isoforms of protochlorophyllide oxidoreduc-tase (POR) from tobacco revealed a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74: 165-172

    Article  PubMed  CAS  Google Scholar 

  • Matters GL and Beale SI (1994) Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosyn-thetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24: 617-629

    Article  PubMed  CAS  Google Scholar 

  • Matters GL and Beale SI (1995) Blue-light-regulated expression of genes for two early steps of chlorophyll biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 109: 471-479

    PubMed  CAS  Google Scholar 

  • Meskauskiene R and Apel K (2002) Interaction of FLU, a nega-tive regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532: 27-30

    Article  PubMed  CAS  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R and Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Nat Acad Sci USA 98: 12826-12831

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A and Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Nat Acad Sci USA 98: 2053-2058

    Article  PubMed  CAS  Google Scholar 

  • Moller MG, Petersen BL, Kannangara CG, Stummann BM and Henningsen KW (1997) Chlorophyll biosynthetic en-zymes and plastid membrane structures in mutants of barley (Hordeum vulgare L). Hereditas 127: 181-191

    Article  CAS  Google Scholar 

  • Moseley J, Quinn J, Eriksson M and Merchant S (2000) The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 19: 2139-2151

    Article  PubMed  CAS  Google Scholar 

  • Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M and Merchant S (2002) Reciprocal expression of two candidate di-iron enzymes affecting pho-tosystem I and light-harvesting complex accumulation. Plant Cell 14: 673-688

    Article  PubMed  CAS  Google Scholar 

  • Mostowska A, Siedlecka M and Parys E (1996) Effect of 2,2 -bipyridyl, a photodynamic herbicide, on chloroplast ultra-structure, pigment content and photosynthesis rate in pea seedlings. Acta Physiol Plant 18: 153-164

    CAS  Google Scholar 

  • Nagata N, Tanaka R, Satoh S and Tanaka A (2005) Identifica-tion of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17: 233-240

    Article  PubMed  CAS  Google Scholar 

  • Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H and Takamiya K (1998) Cloning and Expression of the soybean Chlh gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent Chlh protein within the chloroplast. Plant Cell Physiol 39: 275-284

    PubMed  CAS  Google Scholar 

  • Nguyen LV (1995) Transposon Tagging and Isolation of the Sul-fur Gene in Tobacco (Nicotiana tabacum), Ph.D. Thesis. North Carolina State University, Raleigh, NC

    Google Scholar 

  • Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H and Takamiya K (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474: 133-136

    Article  PubMed  CAS  Google Scholar 

  • Oster U and R üdiger W (1997) The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants. Bot Acta 110: 420-423

    CAS  Google Scholar 

  • Oster U, Brunner H and R üdiger W (1996) The greening process in cress seedlings. 5. Possible interference of chlorophyll pre-cursors, accumulated after Thujaplicin treatment, with light-regulated expression of Lhc genes. J Photochem Photobiol B:Biol 36: 255-261

    Article  CAS  Google Scholar 

  • Oster U, Bauer CE and R üdiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterol-ogous expression in Escherichia coli. J Biol Chem 272: 9671-9676

    Article  PubMed  CAS  Google Scholar 

  • Oster U, Tanaka R, Tanaka A and R üdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21: 305-310

    Article  PubMed  CAS  Google Scholar 

  • Papenbrock J, Mock H-P, Kruse E and Grimm B (1999) Expres-sion studies in tetrapyrrole biosynthesis. Inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208: 264-273

    Article  CAS  Google Scholar 

  • Papenbrock J, Mock HP, Tanaka R, Kruse E and Grimm B (2000a) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122: 1161-1169

    Article  CAS  Google Scholar 

  • Papenbrock J, Pfundel E, Mock H-P and Grimm B (2000b) De-creased and increased expression of the subunit CHL I dimin-ishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant J 22: 155-164

    Article  CAS  Google Scholar 

  • Parham R and Rebeiz CA (1992) Chloroplast biogenesis: (4-vinyl)chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme. Biochemistry 31: 8460-8464

    Article  PubMed  CAS  Google Scholar 

  • Parham R and Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl]chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231: 164-169

    Article  PubMed  CAS  Google Scholar 

  • Petersen BL, Moller MG, Jensen PE and Henningsen KW (1999) Identification of the Xan-g gene and expression of the Mg-chelatase encoding genes Xan-f, -g and -h in mutant and wild type barley (Hordeum vulgare L.). Hereditas 131: 165-170

    Article  CAS  Google Scholar 

  • Pettigrew R, Driscoll CJ and Rienits KG (1969) A spontaneous chlorophyll mutant in hexaploid wheat. Heredity 24: 481-487

    Article  CAS  Google Scholar 

  • Pinta V, Picaud M, Reiss-Husson F and Astier C (2002) Rubri-vivax gelatinosus acsF (previously orf358) codes for a con-served, putative binuclear-iron-cluster-containing protein in- volved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 184: 746-753

    Article  PubMed  CAS  Google Scholar 

  • Pontoppidan B and Kannangara CG (1994) Purification and par-tial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225: 529-537

    Article  PubMed  CAS  Google Scholar 

  • P öpperl G, Oster U, Blos I and R üdiger W (1997) Magnesium chelatase of Hordeum vulgare L is not activated by light but inhibited by pheophorbide. Z Naturforsch C 52: 144-152

    Google Scholar 

  • Porra RJ and Scheer H (2001) 18 O and mass spectrometry in chlorophyll research: derivation and loss of oxygen atoms at the periphery of the chlorophyll macrocycle during biosynthe-sis, degradation and adaptation. Photosynth Res 66: 159-175

    Article  Google Scholar 

  • Porra RJ, Schafer W, Katheder I and Scheer H (1995) The derivation of the oxygen atoms of the 13(1)-oxo and 3-acetyl groups of bacteriochlorophyll a from water in Rhodobacter sphaeroides cells adapting from respiratory to photosynthetic conditions: evidence for an anaerobic pathway for the formation of isocyclic ring E. FEBS Lett 371: 21-24

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Schaefer W, Gad'on N, Katheder I, Drews G and Scheer H (1996) Origin of the two carbonyl oxygens of bac-teriochlorophyll a. Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mecha-nism for 3-acetyl group formation. Eur J Biochem 239: 85-92

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz CA, Parham R, Fasoula DA and Ioannides IM (1994) Chlorophyll a biosynthetic heterogeneity. In: Chadwick DJ and Ackrill K (eds) Ciba Found Symp, Vol 180, pp 177-189; 190-173. John Wiley and Sons, West Sussex.

    Google Scholar 

  • Reinbothe S and Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323-343

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe C, Apel K and Reinbothe S (1995) A light-induced protease from barley plastids degrades NADPH, protochloro-phyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206-6212

    PubMed  CAS  Google Scholar 

  • Reinbothe C, Lebedev N and Reinbothe S (1999) A protochloro-phyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397: 80-84

    Article  CAS  Google Scholar 

  • Reinbothe C, Buhr F, Pollmann S and Reinbothe S (2003) In vitro reconstitution of light-harvesting POR-protochlorophyllide complex with protochlorophyllides a and b. J Biol Chem 278: 807-815

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Runge S and Apel K (1995a) Enzy-matic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. J Cell Biol 129: 299-308

    Article  CAS  Google Scholar 

  • Reinbothe S, Runge S, Reinbothe C, Van CB and Apel K (1995b) Substrate-dependent transport of the NADPH:protochloro-phyllide oxidoreductase into isolated plastids. Plant Cell 7: 161-172

    Article  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Apel K and Lebedev N (1996) Evolu-tion of chlorophyll biosynthesis-the challenge to survive pho-tooxidation. Cell 86: 703-705

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Mache R and Reinbothe C (2000) A second, substrate-dependent site of protein import into chloroplasts. Proc Nat Acad Sci USA 97: 9795-9800

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Pollmann S and Reinbothe C (2003) In situ con-version of protochlorophyllide b to protochlorophyllide a in barley. Evidence for a novel role of 7-formyl reductase in the prolamellar body of etioplasts. J Biol Chem 278: 800-806

    Article  PubMed  CAS  Google Scholar 

  • Reindl A, Reski R, Lerchl J, Grimm B and Al-awadi A (2001) Plant S-adenosylmethionin:Mg protoporphyrin IX-O-methyltransferase and cDNA and transgenic plants with altered chlorophyll content and/or herbicide tolerance. PCT Appl Wo0109355, 70 pp. Basf Aktiengesellschaft, Germany

    Google Scholar 

  • Reiss C and Beale SI (1995) External calcium requirements for light induction of chlorophyll accumulation and its enhance-ment by red light and cytokinin pretreatments in excised etiolated cucumber cotyledons. Planta 196: 635-641

    Article  CAS  Google Scholar 

  • Reith ME and Munholland J (1995) Complete nucleotide se-quence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 333-335

    Article  CAS  Google Scholar 

  • Richards WR, Chan JCS and Hinchigeri SB (1981) Affinity chro-matographic purification of an enzyme of chlorophyll synthe-sis. Photosynth, Proc 5th Int Congr, pp 243-252

    Google Scholar 

  • Rissler HM, Collakova E, DellaPenna D, Whelan J and Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128: 770-779

    Article  PubMed  CAS  Google Scholar 

  • Roitgrund C and Mets LJ (1990) Localization of two novel chloroplast genome functions: trans-splicing of RNA and pro-tochlorophyllide reduction. Curr Genet 17: 147-153

    Article  CAS  Google Scholar 

  • R üdiger W (2002) Biosynthesis of chlorophyll b and the chloro-phyll cycle. Photosynth Res 74: 184-193

    Google Scholar 

  • R üdiger W (2003) The last steps of chlorophyll biosynthesis. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 12, pp 71-108. Academic Press, San Diego

    Google Scholar 

  • Runge S, Cleve Bv, Lebedev N, Armstrong G and Apel K (1995) Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis thaliana. Planta 197: 490-500

    Article  PubMed  CAS  Google Scholar 

  • Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP and Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Nat Acad Sci USA 102: 5886-5891

    Article  PubMed  CAS  Google Scholar 

  • Schmid HC, Oster U, Kogel J, Lenz S and R üdiger W (2001) Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem 382: 903-911

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B (2001a) The light-dependent protochlorophyllide re-duction: from a photoprotecting mechanism to a metabolic reaction. Rec Res Develop Plant Physiol 2: 241-258

    CAS  Google Scholar 

  • Schoefs B (2001b) The protochlorophyllide-chlorophyllide cy-cle. Photosynth Res 70: 257-271

    Article  CAS  Google Scholar 

  • Schubert W-D, Moser J, Schauer S, Heinz DW and Jahn D (2002) Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes. Photosynth Res 74: 205-215

    Article  PubMed  CAS  Google Scholar 

  • Schulz R, Steinmuller K, Klaas M, Forreiter C, Rasmussen S, Hiller C and Apel K (1989) Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet 217: 355-361

    Article  PubMed  CAS  Google Scholar 

  • Schunmann PH and Ougham HJ (1996) Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: a tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Mol Biol 31: 529-537

    Article  PubMed  CAS  Google Scholar 

  • Sears LMS and Sears ER (1968) The mutants chlorina-1 and Hermsen’s virescent. In: Finlay KW and Shepherd KW (eds) Third International Wheat Genetics Symposium, Canberra, pp 299-305

    Google Scholar 

  • Shepherd M, Reid JD and Hunter CN (2003) Purification and kinetic characterization of the magnesium protoporphyrin IX methyltransferase from Synechocystis PCC6803. Biochem J 371: 351-360

    Article  PubMed  CAS  Google Scholar 

  • Skinner J and Timko MP (1998) Loblolly pine (Pinus taeda L.) contains multiple expressed genes encoding light-dependent NADPH:protochlorophyllide oxidoreductase (POR). Plant Cell Physiol 39: 795-806

    PubMed  CAS  Google Scholar 

  • Soll J, Schultz G, R üdiger W and Benz J (1983) Hydrogenation of geranylgeraniol. Two pathways exist in spinach chloroplasts. Plant Physiol 71: 849-854

    Article  PubMed  CAS  Google Scholar 

  • Spano AJ, He Z, Michel H, Hunt DF and Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18: 967-972

    Article  PubMed  CAS  Google Scholar 

  • Sperling U, van Cleve B, Frick G, Apel K and Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photoox-idative damage. Plant J 12: 649-658

    Article  PubMed  CAS  Google Scholar 

  • Sperling U, Franck F, Vancleve B, Frick G, Apel K and Arm-strong GA (1998) Etioplast differentiation in Arabidopsis-both PORA and PORB restore the prolamellar body and photoac-tive protochlorophyllide-F655 to the Cop1 photomorphogenic mutant. Plant Cell 10: 283-296

    Article  PubMed  CAS  Google Scholar 

  • Strand A, Asami T, Alonso J, Ecker JR and Chory J (2003) Chloroplast to nucleus communication triggered by accumu-lation of Mg-protoporphyrinIX. Nature 421: 79-83

    Article  PubMed  CAS  Google Scholar 

  • Su Q, Frick G, Armstrong G and Apel K (2001) PORC of Ara-bidopsis thaliana: a third light- and NADPH-dependent pro-tochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47: 805-813

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY and Bauer CE (1992) Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell 4: 929-940

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY and Bauer CE (1995) A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Nat Acad Sci USA 92: 3749-3753

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY, Bollivar DW and Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31: 61-89

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Takio S, Yamamoto I and Satoh T (2001) Charac-terization of cDNA of the liverwort phytochrome gene, and phytochrome involvement in the light-dependent and light-independent protochlorophyllide oxidoreductase gene expres-sion in Marchantia paleacea var. diptera. Plant Cell Physiol 42: 576-582

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chloro-phyll b formation from chlorophyll a. Proc Nat Acad Sci USA 95: 12719-12723

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Oster U, Kruse E, R üdiger W and Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120: 695-704

    Article  PubMed  CAS  Google Scholar 

  • Taylor DP, Cohen SN, Clark WG and Marrs BM (1983) Align-ment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol 154: 580-590

    PubMed  CAS  Google Scholar 

  • Teakle GR and Griffiths WT (1993) Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J 296: 225-230

    PubMed  CAS  Google Scholar 

  • Thomas RM and Singh VP (1995) Effects of three triazole derivatives on mercury induced inhibition of chlorophyll and carotenoid accumulation in cucumber cotyledons. Indian J Plant Physiol 38: 313-316

    CAS  Google Scholar 

  • Thomas RM and Singh VP (1996) Reduction of cadmium-induced inhibition of chlorophyll and carotenoid accumulation in Cucumis sativus L. by uniconazole (S. 3307). Photosynthet-ica 32: 145-148

    CAS  Google Scholar 

  • Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159-162

    Article  PubMed  CAS  Google Scholar 

  • Ujwal ML, McCormac AC, Goulding A, Kumar AM, Soll D and Terry MJ (2002) Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidop-sis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. Plant Mol Biol 50: 83-91

    Article  PubMed  CAS  Google Scholar 

  • Vale RD (2000) AAA proteins. Lords of the ring. J Cell Biol 150: F13-F19

    Article  PubMed  CAS  Google Scholar 

  • Vavilin DV and Vermaas WFJ (2002) Regulation of the tetrapyr-role biosynthetic pathways leading to heme and chlorophyll in plants and cyanobacteria. Physiol Plant 115: 9-24

    Article  PubMed  CAS  Google Scholar 

  • Vijayan P, Whyte BJ and Castelfranco PA (1992) A spec-trophotometric analysis of the magnesium protoporphyrin IX monomethyl ester (oxidative) cyclase. Plant Physiol Biochem 30: 271-278

    CAS  Google Scholar 

  • Vothknecht UC, Kannangara CG and von Wettstein D (1998) Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. Phytochemistry 47: 513-519

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ and Weinstein JD (1991) In vitro assay of the chloro-phyll biosynthetic enzyme magnesium chelatase: Resolution of the activity into soluble and membrane bound fractions. Proc Nat Acad Sci USA 88: 5789-5793

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Mansfield KE, Smith KM and Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl func-tionality of the protochlorophyllide isocyclic ring. Biochem J 257: 599-602

    PubMed  CAS  Google Scholar 

  • Walker CJ, Castelfranco PA and Whyte BJ (1991a) Synthesis of divinyl protochlorophyllide. Enzymological properties of the magnesium-protoporphyrin IX monomethyl ester oxida-tive cyclase system. Biochem J 276: 691-697

    CAS  Google Scholar 

  • Walker CJ, Castelfranco PA and Whyte BJ (1991b) Synthesis of divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J 276: 691-697

    CAS  Google Scholar 

  • Walker CJ, Kannangara CG and vonWettstein D (1997) Identifi-cation of xantha l-35 and viridis k-23 as mutants of the Mg-protoporphyrin monomethyl ester cyclase of chlorophyll syn-thesis in barley (Hordeum vulgare). Plant Physiol 114: 708-708

    Google Scholar 

  • Wang WY, Wang WL, Boynton JE and Gillham NW (1974) Ge-netic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of mutants at two loci mediating the conversion of protoporphyrin-IX to magnesium protoporphyrin. J Cell Biol 63: 806-823

    Article  PubMed  CAS  Google Scholar 

  • Whyte BJ and Castelfranco PA (1993) Further observations on the magnesium-protoporphyrin IX monomethyl ester (oxida-tive) cyclase system. Biochem J 290: 355-359

    PubMed  CAS  Google Scholar 

  • Whyte BJ and Griffiths WT (1993) 8-vinyl reduction and chloro-phyll a biosynthesis in higher plants. Biochem J 291: 939-944

    PubMed  CAS  Google Scholar 

  • Whyte BJ, Fijayan P and Castelfranco PA (1992) In vitro syn-thesis of protochlorophyllide: effects of magnesium and other cations on the reconstituted (oxidative) cyclase. Plant Physiol Biochem 30: 279-284

    CAS  Google Scholar 

  • Wiktorsson B, Ryberg M, Gough S and Sundqvist C (1992) Isoelectric focusing of pigment-protein complexes solubilized from non-irradiated and irradiated prolamellar bodies. Physiol Plant 85: 659-669

    Article  CAS  Google Scholar 

  • Wiktorsson B, Engdahl S, Zhong LB, Boddi B, Ryberg M and Sundqvist C (1993) The effect of cross-linking of the sub-units of NADPH-protochlorophyllide oxidoreductase on the aggregational state of protochlorophyllide. Photosynthetica 29: 205-218

    CAS  Google Scholar 

  • Wiktorsson B, Ryberg M and Sundqvist C (1996a) Aggrega-tion of NADPH-protochlorophyllide oxidoreductase-pigment complexes is favored by protein phosphorylation. Plant Phys-iol Biochem 34: 23-34

    CAS  Google Scholar 

  • Wiktorsson B, Ryberg M and Sundqvist C (1996b) Aggrega-tion of NADPH-protochlorophyllide oxidoreductase-pigment complexes is favoured by protein phosphorylation. Plant Physiol Biochem 34: 23-34

    CAS  Google Scholar 

  • Willows R (1999) Photosynthesis-making light of a dark situa-tion. Nature 397: 27-28

    Article  CAS  Google Scholar 

  • Willows RD (2003) Biosynthesis of chlorophylls from protopor-phyrin IX. Nat Prod Rep 20: 327-341

    Article  PubMed  CAS  Google Scholar 

  • Willows RD and Beale SI (1998) Heterologous expression of the Rhodobacter capsulatus BchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. J Biol Chem 273: 34206-34213

    Article  PubMed  CAS  Google Scholar 

  • Willows RD and Hansson M (2003) Mechanism, structure and regulation of magnesium chelatase. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 13, pp 1-48. Academic Press, San Diego

    Google Scholar 

  • Willows RD, Gibson LCD, Kanangara CG, Hunter CN and von Wettstein D (1996) Three separate proteins constitute the mag-nesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235: 438-443

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Lake V, Roberts TH and Beale SI (2003) Inacti-vation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. J Bacteriol 185: 3249-3258

    Article  PubMed  CAS  Google Scholar 

  • Willows RD, Hansson A, Birch D, Al-Karadaghi S and Hansson M (2004) EM single particle analysis of the ATP-dependent BchI complex of magnesium chelatase: an AAA+ hexamer. J Struct Biol 146: 227-233

    Article  PubMed  CAS  Google Scholar 

  • Younis S, Ryberg M and Sundqvist C (1995) Plastid develop-ment in germinating wheat (Triticum aestivum) is enhanced by gibberellic acid and delayed by gabaculine. Physiol Plant 95: 336-346.

    Article  CAS  Google Scholar 

  • Zsebo KM and Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata. Cell 37: 937-947

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Willows, R.D. (2007). Chlorophyll Synthesis. In: Wise, R.R., Hoober, J.K. (eds) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4061-0_15

Download citation

Publish with us

Policies and ethics