Chlorophyll is the dominant pigment in a mature plant cell, whether in the leaf of a plant or in the abundant algal species. Chlorophyll is synthesized within the chloroplast from a plentiful precursor, the amino acid glutamate. From glutamate to the tetrapyrrole protoporphyrin IX, at which the pathway branches between chlorophyll and heme, the reactions occur in the plastid stroma and are catalyzed by soluble enzymes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamson HY, Hiller RG and Walmsley J (1997) Protochloro-phyllide reduction and greening in angiosperms-an evolu-tionary perspective. J Photochem Photobiol B:Biol 41: 201-221
Armstrong GA (1998) Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bac-teria to gymnosperms. J Photochem Photobiol B:Biol 43: 87-100
Armstrong GA, Runge S, Frick G, Sperling U and Apel K (1995) Identification of NADPH:protochlorophyllide oxidore-ductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Phys-iol 108: 1505-1517
Armstrong GA, Apel K and R üdiger W (2000) Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends Plant Sci 5: 40-44
Aronsson H, Sohrt K and Soll J (2000) NADPH: protochloro-phyllide oxidoreductase uses the general import route into chloroplasts. Biol Chem 381: 1263-1267
Aronsson H, Sundqvist C and Dahlin C (2003) POR hits the road: import and assembly of a plastid protein. Plant Mol Biol 51: 1-7
Barnes SA, Nishizawa NK, Quaggio RB, Whitelam GC and Chua N-H (1996) Far-red light blocks greening of Arabidop-sis seedlings via a phytochrome A-mediated change in plastid development. Plant Cell 8: 601-615
Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photo-synth Res 60: 43-73
Belyaeva OB, Sundqvist C and Litvin FF (2000) Nonpigment components of the photochlorophyllide photoactive complex: studies of low-temperature blue-green fluorescence spectra. Memb Cell Biol 13: 337-345
Block MA, Tewari AK, Albrieux C, Mar échal E and Joyard J (2002) The plant S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase is located in both en-velope and thylakoid chloroplast membranes. Eur J Biochem 269: 240-248
Boddi B, Oravecz AR and Lehoczki E (1995) Effect of cadmium on organization and photoreduction of protochlorophyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica 31: 411-420
Bollivar DW (2003) Intermediate steps in chlorophyll biosyn-thesis. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 13, pp 49-70. Academic Press, San Diego.
Bollivar DW and Beale SI (1995) Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts. Photosynth Res 43: 113-124
Bollivar DW and Beale SI (1996) The chlorophyll biosynthetic enzyme Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase-characterization and partial purification from Chlamy-domonas reinhardtii and Synechocystis sp PCC 6803. Plant Physiol 112: 105-114
Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM and Bauer CE (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237: 622-640
Bougri O and Grimm B (1996) Members of a low-copy number gene family encoding glutamyl-tRNA reductase are differen-tially expressed in barley. Plant J 9: 867-878
Burke DH, Hearst JE and Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Nat Acad Sci USA 90: 7134-7138
Cahoon AB and Timko MP (2000) yellow-in-the-dark mutants of Chlamydomonas lack the CHLL subunit of light-independent protochlorophyllide reductase. Plant Cell 12: 559-568
Chahdi MAO, Schoefs B and Franck F (1998) Isola-tion and characterization of photoactive complexes of NADPH:protochlorophyllide oxidoreductase from wheat. Planta 206: 673-680
Chekounova E, Voronetskaja V, Papenbrock J, Grimm B and Beck CF (2001) Characterization of Chlamydomonas mutants defective in the H-subunit of Mg-chelatase. Mol Gen Genet 266: 363-373.
Confalonieri F and Duguet M (1995) A 200-amino acid ATPase module in search of a basic function. Bioessays 17: 639-650
Coomber SA, Chaudhri M, Connor A, Britton G and Hunter CN (1990) Localized transposon Tn5 mutagenesis of the pho-tosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 4: 977-989
Dahlin C, Aronsson H, Almkvist J and Sundqvist C (2000) Protochlorophyllide-independent import of two NADPH:Pchlide oxidoreductase proteins (PORA and PORB) from barley into isolated plastids. Physiol Plant 109: 298-303
Eckhardt U, Grimm B and H örtensteiner S (2004) Recent ad-vances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol 56: 1-14
Espineda CE, Linford AS, Devine D and Brusslan JA (1999) The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proc Nat Acad Sci USA 96: 10507-10511
Falbel TG and Staehelin LA (1994) Characterization of a fam-ily of chlorophyll-deficient wheat (Triticum) and a barley (Hordeum vulgare) mutants with defects in the magnesium-insertion step of chlorophyll biosynthesis. Plant Physiol 104: 639-648
Ferreira GC (1999) Ferrochelatase. Internatl J Biochem Cell Biol 31: 995-1000
Fodje MN, Hansson A, Hansson M, Olsen JG, Gough S, Willows RD and Al-Karadaghi S (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311: 111-122
Forreiter C and Apel K (1993) Light-independent and light-dependent protochlorophyllide-reducing activities and two distinct NADPH-protochlorophyllide oxidoreductase poly-peptides in mountain pine (Pinus mugo). Planta 190: 536-545
Forreiter C, Van Cleve B, Schmidt A and Apel K (1990) Evidence for a general light-dependent negative control of NADPH-protochlorophyllide oxidoreductase in angiosperms. Planta 183: 126-132
Franck F, Sperling U, Frick G, Pochert B, Van Cleve B, Apel K and Armstrong GA (2000) Regulation of etioplast pigment-protein complexes, inner membrane architecture, and protochlorophyllide a chemical heterogeneity by light-dependent NADPH:protochlorophyllide oxidoreductases A and B. Plant Physiol 124: 1678-1696
Freeman TP, Duysen ME and Williams ND (1987) Effects of gene dosage on light harvesting chlorophyll accumulation, chloro-plast development, and photosynthesis in wheat. Can J Bot 65: 2118-2123
Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37: 411-421
Fujita Y and Bauer C (2003) The light-independent protochloro-phyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 12, pp 109-156. Academic Press, San Diego
Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H, Ohta H and Takamiya K (2000) NADPH-protochlorophyllide ox-idoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynth Res 64: 147-154
Gibson LC, Marrison JL, Leech RM, Jensen PE, Bassham DC, Gibson M and Hunter CN (1996) A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Sequence and transcript analysis of the gene, import of the protein into chloro-plasts, and in situ localization of the transcript and protein. Plant Physiol 111: 61-71
Gibson LC, Jensen PE and Hunter CN (1999) Magnesium chelatase from Rhodobacter sphaeroides: initial characteri-zation of the enzyme using purified subunits and evidence for a BchI-BchD complex. Biochem J 337: 243-251
Gorchein A, Gibson LCD and Hunter CN (1993) Gene expres-sion and control of enzymes for synthesis of magnesium pro-toporphyrin monomethyl ester in Rhodobacter sphaeroides. Biochem Soc Trans 21: 201S
Granick S (1948) Protoporphyrin 9 as a precursor of chlorophyll. J Biol Chem 172: 717-727
Grimm B (2003) Regulatory mechanisms of eukaryotic tetrapyr-role biosynthesis. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 12, pp 1-32. Academic Press, San Diego
Guo R, Luo M and Weinstein JD (1998) Magnesium chelatase from developing pea leaves. Plant Physiol 116: 605-615
Hansson A, Kannangara CG, von Wettstein D and Hansson M (1999) Molecular basis for semidominance of missense mu-tations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Nat Acad Sci USA 96: 1744-1749
Hansson A, Willows RD, Roberts TH and Hansson M (2002) Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Nat Acad Sci USA 99: 13944-13949
He ZH, Li JM, Sundqvist C and Timko MP (1994) Leaf devel-opmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum L). Plant Physiol 106: 537-546
Hennig M, Grimm B, Jenny M, M üller R and Jansonius JN (1994) Crystallization and preliminary X-ray analysis of wild-type and K272A mutant glutamate 1-semialdehyde aminotrans-ferase from Synechococcus. J Mol Biol 242: 591-594
Hennig M, Grimm B, Contestabile R, John RA and Jansonius JN (1997) Crystal structure of glutamate 1-semialdehyde amino-mutase: an α2 -dimeric vitamin-B6 -dependent enzyme with asymmetry in structure and active site reactivity. Proc Nat Acad Sci USA 94: 4866-4871
Henningsen KW, Boynton JE and von Wettstein D (1993) Mutants at xantha and albina loci in relation to chloroplast biogenesis in barley (Hordeum vulgare L.). Kongelige Danske Videnskabernes Selskab Biologiske Skrifter 42: 1-348
Hinchigeri SB and Richards WR (1982) The reaction mecha-nism of S-adenosyl-L-methionine:magnesium protoporphyrin methyltransferase from Euglena gracilis. Photosynthetica 16: 554-560
Hinchigeri SB, Chan JCS and Richards WR (1981) Purifica-tion of S-adenosyl-L-methionine: magnesium protoporphyrin methyltransferase by affinity chromatography. Photosynthet-ica 15: 351-359
Holtorf H and Apel K (1996) Transcripts of the two NADPH protochlorophyllide oxidereductase genes PorA and PorB are differentially degraded in etiolated barley seedlings. Plant Mol Biol 31: 387-392
Holtorf H, Reinbothe S, Reinbothe C, Bereza B and Apel K (1995) Two routes of chlorophyllide synthesis that are differ-entially regulated by light in barley (Hordeum vulgare L.). Proc Nat Acad Sci USA 92: 3254-3258
Hudson A, Carpenter R, Doyle S and Coen ES (1993) Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J 12: 3711-3719
Ilag LL, Kumar AM and Soll D (1994) Light regulation of chloro-phyll biosynthesis at the level of 5- aminolevulinate formation in Arabidopsis. Plant Cell 6: 265-275
Im CS and Beale SI (2000) Identification of possible signal trans-duction components mediating light induction of the Gsa gene for an early chlorophyll biosynthetic step in Chlamydomonas reinhardtii. Planta 210: 999-1005
Im CS, Matters GL and Beale SI (1996) Calcium and calmodulin are involved in blue light induction of theGsa gene for an early chlorophyll biosynthetic step in Chlamydomonas. Plant Cell 8: 2245-2253
Jensen PE, Gibson LCD, Henningsen KW and Hunter CN (1996a) Expression of the chlI, chlD, and chlH genes from the cyanobacterium Synechocystis PCC6803 in Escherichia coli and demonstration that the three cognate proteins are required for magnesium-protoporphyrin chelatase activity. J Biol Chem 271: 16662-16667
Jensen PE, Willows RD, Petersen BL, Vothknecht UC, Stum-mann BM, Kannangara CG, von Wettstein D and Henningsen KW (1996b) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet 250: 383-394
Jensen PE, Gibson LCD and Hunter CN (1998) Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocys-tis PCC6803. Biochem J 334: 335-344
Jordan PM (1994) The biosynthesis of uroporphyrinogen III: mechanism of action of porphobilinogen deaminase. In: Chad-wick DJ and Ackrill K (eds) The Biosynthesis of the Tetrapyr-role Pigments, Ciba Foundation Symposium 180, pp 70-89. John Wiley & Sons, Chichester
Joyard J, Teyssier E, Mi ège C, Berny-Seigneurin D, Mar èchal E, Block MA, Dorne A-J, Rolland N, Ajlani G and Douce R (1998) The biochemical machinery of plastid envelope mem-branes. Plant Physiol 118: 715-723
Kim C and Apel K (2004) Substrate-dependent and organ-specific chloroplast protein import in planta. Plant Cell 16: 88-98
Kim JS and Rebeiz CA (1995) An improved analysis for determi-nation of monovinyl and divinyl protoporphyrin IX. J Photosci 2: 103-106
Kim JS, Kolossov V and Rebeiz CA (1997) Chloroplast biogen-esis 76. Regulation of 4-vinyl reduction during conversion of divinyl Mg-protoporphyrin IX to monovinyl protochlorophyl-lide a is controlled by plastid membrane and stromal factors. Photosynthetica 34: 569-581
Klement H, Oster U and R üdiger W (2000) The influence of glyc-erol and chloroplast lipids on the spectral shifts of pigments associated with NADPH:protochlorophyllide oxidoreductase from Avena sativa L. FEBS Lett 480: 306-310
Kolossov VL and Rebeiz CA (2003) Chloroplast biogenesis 88. Protochlorophyllide b occurs in green but not in etiolated plants. J Biol Chem 278: 49675-49678
Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Redei GP and Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana. EMBO J 9: 1337-1346
Kovacheva S, Ryberg M and Sundqvist C (2000) ADP/ATP and protein phosphorylation dependence of phototransformable protochlorophyllide in isolated etioplast membranes. Photo-synth Res 64: 127-136
Kuroda H, Masuda T, Ohta H, Shioi Y and Takamiya K (1995) Light-enhanced gene expression of NADPH-protochlorophyllide oxidoreductase in cucumber. Biochem Biophys Res Commun 210: 310-316
Kuroda H, Masuda T, Fusada N, Ohta H and Takamiya K (2000) Expression of NADPH-protochlorophyllide oxidoreductase gene in fully green leaves of cucumber. Plant Cell Physiol 41: 226-229
Kuroda H, Masuda T, Fusada N, Ohta H and Takamiya K (2001) Cytokinin-induced transcriptional activation of NADPH-protochlorophyllide oxidoreductase gene in cucumber. J Plant Res 114: 1-7
Kusnetsov V, Herrmann RG, Kulaeva ON and Oelmuller R (1998) Cytokinin stimulates and abscisic acid inhibits green-ing of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidore-ductase. Mol Gen Genet 259: 21-28
Lake V and Willows RD (2003) Rapid extraction of RNA and analysis of transcript levels in Chlamydomonas reinhardtii us-ing real-time RT-PCR: magnesium chelatase chlH, chlD and chlI gene expression. Photosynth Res 77: 69-76
Lake V, Olsson U, Willows RD and Hansson M (2004) AT-Pase activity of magnesium chelatase subunit I is required to maintain subunit D in vivo. Eur J Biochem 271: 2182-2188
Larkin RM, Alonso JM, Ecker JR and Chory J (2003) Gun4, a regulator of chlorophyll synthesis and intracellular signalling. Science 299: 902-906
Lebedev N and Timko MP (1998) Protochlorophyllide photore-duction. Photosynth Res 58: 5-23
Lenti K, Fodor F and Boddi B (2002) Mercury inhibits the activ-ity of the NADPH:protochlorophyllide oxidoreductase (POR). Photosynthetica 40: 145-151
Li J and Timko MP (1996) The pc-1 phenotype of Chlamy-domonas reinhardtii results from a deletion mutation in the nu-clear gene for NADPH:protochlorophyllide oxidoreductase. Plant Mol Biol 30: 15-37
Li J, Goldschmidt-Clermont M and Timko MP (1993) Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. Plant Cell 5: 1817-1829
Lidholm J and Gustafsson P (1991) Homologues of the green algal gidA gene and the liverwort frxC gene are present on the chloroplast genomes of conifers. Plant Mol Biol 17: 787-798
Liu XQ, Xu H and Huang C (1993) Chloroplast chlB gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol 23: 297-308
Marrison JL, Schunmann PHD, Ougham HJ and Leech RM (1996) Subcellular visualization of gene transcripts encod-ing key proteins of the chlorophyll accumulation process in developing chloroplasts. Plant Physiol 110: 1089-1096
Mascia P (1978) An analysis of precursors accumulated by several chlorophyll biosynthetic mutants of maize. Mol Gen Genet 161: 237-244
Masuda T, Fusada N, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H and Takamiya K (2002) Identification of two differen-tially regulated isoforms of protochlorophyllide oxidoreduc-tase (POR) from tobacco revealed a wide variety of light- and development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74: 165-172
Matters GL and Beale SI (1994) Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosyn-thetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. Plant Mol Biol 24: 617-629
Matters GL and Beale SI (1995) Blue-light-regulated expression of genes for two early steps of chlorophyll biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 109: 471-479
Meskauskiene R and Apel K (2002) Interaction of FLU, a nega-tive regulator of tetrapyrrole biosynthesis, with the glutamyl-tRNA reductase requires the tetratricopeptide repeat domain of FLU. FEBS Lett 532: 27-30
Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R and Apel K (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Nat Acad Sci USA 98: 12826-12831
Mochizuki N, Brusslan JA, Larkin R, Nagatani A and Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Nat Acad Sci USA 98: 2053-2058
Moller MG, Petersen BL, Kannangara CG, Stummann BM and Henningsen KW (1997) Chlorophyll biosynthetic en-zymes and plastid membrane structures in mutants of barley (Hordeum vulgare L). Hereditas 127: 181-191
Moseley J, Quinn J, Eriksson M and Merchant S (2000) The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. EMBO J 19: 2139-2151
Moseley JL, Page MD, Alder NP, Eriksson M, Quinn J, Soto F, Theg SM, Hippler M and Merchant S (2002) Reciprocal expression of two candidate di-iron enzymes affecting pho-tosystem I and light-harvesting complex accumulation. Plant Cell 14: 673-688
Mostowska A, Siedlecka M and Parys E (1996) Effect of 2,2′ -bipyridyl, a photodynamic herbicide, on chloroplast ultra-structure, pigment content and photosynthesis rate in pea seedlings. Acta Physiol Plant 18: 153-164
Nagata N, Tanaka R, Satoh S and Tanaka A (2005) Identifica-tion of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 17: 233-240
Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H and Takamiya K (1998) Cloning and Expression of the soybean Chlh gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent Chlh protein within the chloroplast. Plant Cell Physiol 39: 275-284
Nguyen LV (1995) Transposon Tagging and Isolation of the Sul-fur Gene in Tobacco (Nicotiana tabacum), Ph.D. Thesis. North Carolina State University, Raleigh, NC
Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H and Takamiya K (2000) Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474: 133-136
Oster U and R üdiger W (1997) The G4 gene of Arabidopsis thaliana encodes a chlorophyll synthase of etiolated plants. Bot Acta 110: 420-423
Oster U, Brunner H and R üdiger W (1996) The greening process in cress seedlings. 5. Possible interference of chlorophyll pre-cursors, accumulated after Thujaplicin treatment, with light-regulated expression of Lhc genes. J Photochem Photobiol B:Biol 36: 255-261
Oster U, Bauer CE and R üdiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterol-ogous expression in Escherichia coli. J Biol Chem 272: 9671-9676
Oster U, Tanaka R, Tanaka A and R üdiger W (2000) Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. Plant J 21: 305-310
Papenbrock J, Mock H-P, Kruse E and Grimm B (1999) Expres-sion studies in tetrapyrrole biosynthesis. Inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta 208: 264-273
Papenbrock J, Mock HP, Tanaka R, Kruse E and Grimm B (2000a) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122: 1161-1169
Papenbrock J, Pfundel E, Mock H-P and Grimm B (2000b) De-creased and increased expression of the subunit CHL I dimin-ishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant J 22: 155-164
Parham R and Rebeiz CA (1992) Chloroplast biogenesis: (4-vinyl)chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme. Biochemistry 31: 8460-8464
Parham R and Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl]chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231: 164-169
Petersen BL, Moller MG, Jensen PE and Henningsen KW (1999) Identification of the Xan-g gene and expression of the Mg-chelatase encoding genes Xan-f, -g and -h in mutant and wild type barley (Hordeum vulgare L.). Hereditas 131: 165-170
Pettigrew R, Driscoll CJ and Rienits KG (1969) A spontaneous chlorophyll mutant in hexaploid wheat. Heredity 24: 481-487
Pinta V, Picaud M, Reiss-Husson F and Astier C (2002) Rubri-vivax gelatinosus acsF (previously orf358) codes for a con-served, putative binuclear-iron-cluster-containing protein in- volved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester. J Bacteriol 184: 746-753
Pontoppidan B and Kannangara CG (1994) Purification and par-tial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. Eur J Biochem 225: 529-537
P öpperl G, Oster U, Blos I and R üdiger W (1997) Magnesium chelatase of Hordeum vulgare L is not activated by light but inhibited by pheophorbide. Z Naturforsch C 52: 144-152
Porra RJ and Scheer H (2001) 18 O and mass spectrometry in chlorophyll research: derivation and loss of oxygen atoms at the periphery of the chlorophyll macrocycle during biosynthe-sis, degradation and adaptation. Photosynth Res 66: 159-175
Porra RJ, Schafer W, Katheder I and Scheer H (1995) The derivation of the oxygen atoms of the 13(1)-oxo and 3-acetyl groups of bacteriochlorophyll a from water in Rhodobacter sphaeroides cells adapting from respiratory to photosynthetic conditions: evidence for an anaerobic pathway for the formation of isocyclic ring E. FEBS Lett 371: 21-24
Porra RJ, Schaefer W, Gad'on N, Katheder I, Drews G and Scheer H (1996) Origin of the two carbonyl oxygens of bac-teriochlorophyll a. Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mecha-nism for 3-acetyl group formation. Eur J Biochem 239: 85-92
Rebeiz CA, Parham R, Fasoula DA and Ioannides IM (1994) Chlorophyll a biosynthetic heterogeneity. In: Chadwick DJ and Ackrill K (eds) Ciba Found Symp, Vol 180, pp 177-189; 190-173. John Wiley and Sons, West Sussex.
Reinbothe S and Reinbothe C (1996) The regulation of enzymes involved in chlorophyll biosynthesis. Eur J Biochem 237: 323-343
Reinbothe C, Apel K and Reinbothe S (1995) A light-induced protease from barley plastids degrades NADPH, protochloro-phyllide oxidoreductase complexed with chlorophyllide. Mol Cell Biol 15: 6206-6212
Reinbothe C, Lebedev N and Reinbothe S (1999) A protochloro-phyllide light-harvesting complex involved in de-etiolation of higher plants. Nature 397: 80-84
Reinbothe C, Buhr F, Pollmann S and Reinbothe S (2003) In vitro reconstitution of light-harvesting POR-protochlorophyllide complex with protochlorophyllides a and b. J Biol Chem 278: 807-815
Reinbothe S, Reinbothe C, Runge S and Apel K (1995a) Enzy-matic product formation impairs both the chloroplast receptor-binding function as well as translocation competence of the NADPH: protochlorophyllide oxidoreductase, a nuclear-encoded plastid precursor protein. J Cell Biol 129: 299-308
Reinbothe S, Runge S, Reinbothe C, Van CB and Apel K (1995b) Substrate-dependent transport of the NADPH:protochloro-phyllide oxidoreductase into isolated plastids. Plant Cell 7: 161-172
Reinbothe S, Reinbothe C, Apel K and Lebedev N (1996) Evolu-tion of chlorophyll biosynthesis-the challenge to survive pho-tooxidation. Cell 86: 703-705
Reinbothe S, Mache R and Reinbothe C (2000) A second, substrate-dependent site of protein import into chloroplasts. Proc Nat Acad Sci USA 97: 9795-9800
Reinbothe S, Pollmann S and Reinbothe C (2003) In situ con-version of protochlorophyllide b to protochlorophyllide a in barley. Evidence for a novel role of 7-formyl reductase in the prolamellar body of etioplasts. J Biol Chem 278: 800-806
Reindl A, Reski R, Lerchl J, Grimm B and Al-awadi A (2001) Plant S-adenosylmethionin:Mg protoporphyrin IX-O-methyltransferase and cDNA and transgenic plants with altered chlorophyll content and/or herbicide tolerance. PCT Appl Wo0109355, 70 pp. Basf Aktiengesellschaft, Germany
Reiss C and Beale SI (1995) External calcium requirements for light induction of chlorophyll accumulation and its enhance-ment by red light and cytokinin pretreatments in excised etiolated cucumber cotyledons. Planta 196: 635-641
Reith ME and Munholland J (1995) Complete nucleotide se-quence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 333-335
Richards WR, Chan JCS and Hinchigeri SB (1981) Affinity chro-matographic purification of an enzyme of chlorophyll synthe-sis. Photosynth, Proc 5th Int Congr, pp 243-252
Rissler HM, Collakova E, DellaPenna D, Whelan J and Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128: 770-779
Roitgrund C and Mets LJ (1990) Localization of two novel chloroplast genome functions: trans-splicing of RNA and pro-tochlorophyllide reduction. Curr Genet 17: 147-153
R üdiger W (2002) Biosynthesis of chlorophyll b and the chloro-phyll cycle. Photosynth Res 74: 184-193
R üdiger W (2003) The last steps of chlorophyll biosynthesis. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 12, pp 71-108. Academic Press, San Diego
Runge S, Cleve Bv, Lebedev N, Armstrong G and Apel K (1995) Isolation and classification of chlorophyll-deficient xantha mutants of Arabidopsis thaliana. Planta 197: 490-500
Rzeznicka K, Walker CJ, Westergren T, Kannangara CG, von Wettstein D, Merchant S, Gough SP and Hansson M (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Nat Acad Sci USA 102: 5886-5891
Schmid HC, Oster U, Kogel J, Lenz S and R üdiger W (2001) Cloning and characterisation of chlorophyll synthase from Avena sativa. Biol Chem 382: 903-911
Schoefs B (2001a) The light-dependent protochlorophyllide re-duction: from a photoprotecting mechanism to a metabolic reaction. Rec Res Develop Plant Physiol 2: 241-258
Schoefs B (2001b) The protochlorophyllide-chlorophyllide cy-cle. Photosynth Res 70: 257-271
Schubert W-D, Moser J, Schauer S, Heinz DW and Jahn D (2002) Structure and function of glutamyl-tRNA reductase, the first enzyme of tetrapyrrole biosynthesis in plants and prokaryotes. Photosynth Res 74: 205-215
Schulz R, Steinmuller K, Klaas M, Forreiter C, Rasmussen S, Hiller C and Apel K (1989) Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet 217: 355-361
Schunmann PH and Ougham HJ (1996) Identification of three cDNA clones expressed in the leaf extension zone and with altered patterns of expression in the slender mutant of barley: a tonoplast intrinsic protein, a putative structural protein and protochlorophyllide oxidoreductase. Plant Mol Biol 31: 529-537
Sears LMS and Sears ER (1968) The mutants chlorina-1 and Hermsen’s virescent. In: Finlay KW and Shepherd KW (eds) Third International Wheat Genetics Symposium, Canberra, pp 299-305
Shepherd M, Reid JD and Hunter CN (2003) Purification and kinetic characterization of the magnesium protoporphyrin IX methyltransferase from Synechocystis PCC6803. Biochem J 371: 351-360
Skinner J and Timko MP (1998) Loblolly pine (Pinus taeda L.) contains multiple expressed genes encoding light-dependent NADPH:protochlorophyllide oxidoreductase (POR). Plant Cell Physiol 39: 795-806
Soll J, Schultz G, R üdiger W and Benz J (1983) Hydrogenation of geranylgeraniol. Two pathways exist in spinach chloroplasts. Plant Physiol 71: 849-854
Spano AJ, He Z, Michel H, Hunt DF and Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH: protochlorophyllide oxidoreductase in pea (Pisum sativum L.). Plant Mol Biol 18: 967-972
Sperling U, van Cleve B, Frick G, Apel K and Armstrong GA (1997) Overexpression of light-dependent PORA or PORB in plants depleted of endogenous POR by far-red light enhances seedling survival in white light and protects against photoox-idative damage. Plant J 12: 649-658
Sperling U, Franck F, Vancleve B, Frick G, Apel K and Arm-strong GA (1998) Etioplast differentiation in Arabidopsis-both PORA and PORB restore the prolamellar body and photoac-tive protochlorophyllide-F655 to the Cop1 photomorphogenic mutant. Plant Cell 10: 283-296
Strand A, Asami T, Alonso J, Ecker JR and Chory J (2003) Chloroplast to nucleus communication triggered by accumu-lation of Mg-protoporphyrinIX. Nature 421: 79-83
Su Q, Frick G, Armstrong G and Apel K (2001) PORC of Ara-bidopsis thaliana: a third light- and NADPH-dependent pro-tochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47: 805-813
Suzuki JY and Bauer CE (1992) Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell 4: 929-940
Suzuki JY and Bauer CE (1995) A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. Proc Nat Acad Sci USA 92: 3749-3753
Suzuki JY, Bollivar DW and Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31: 61-89
Suzuki T, Takio S, Yamamoto I and Satoh T (2001) Charac-terization of cDNA of the liverwort phytochrome gene, and phytochrome involvement in the light-dependent and light-independent protochlorophyllide oxidoreductase gene expres-sion in Marchantia paleacea var. diptera. Plant Cell Physiol 42: 576-582
Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K and Okada K (1998) Chlorophyll a oxygenase (CAO) is involved in chloro-phyll b formation from chlorophyll a. Proc Nat Acad Sci USA 95: 12719-12723
Tanaka R, Oster U, Kruse E, R üdiger W and Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120: 695-704
Taylor DP, Cohen SN, Clark WG and Marrs BM (1983) Align-ment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol 154: 580-590
Teakle GR and Griffiths WT (1993) Cloning, characterization and import studies on protochlorophyllide reductase from wheat (Triticum aestivum). Biochem J 296: 225-230
Thomas RM and Singh VP (1995) Effects of three triazole derivatives on mercury induced inhibition of chlorophyll and carotenoid accumulation in cucumber cotyledons. Indian J Plant Physiol 38: 313-316
Thomas RM and Singh VP (1996) Reduction of cadmium-induced inhibition of chlorophyll and carotenoid accumulation in Cucumis sativus L. by uniconazole (S. 3307). Photosynthet-ica 32: 145-148
Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T and Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400: 159-162
Ujwal ML, McCormac AC, Goulding A, Kumar AM, Soll D and Terry MJ (2002) Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidop-sis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. Plant Mol Biol 50: 83-91
Vale RD (2000) AAA proteins. Lords of the ring. J Cell Biol 150: F13-F19
Vavilin DV and Vermaas WFJ (2002) Regulation of the tetrapyr-role biosynthetic pathways leading to heme and chlorophyll in plants and cyanobacteria. Physiol Plant 115: 9-24
Vijayan P, Whyte BJ and Castelfranco PA (1992) A spec-trophotometric analysis of the magnesium protoporphyrin IX monomethyl ester (oxidative) cyclase. Plant Physiol Biochem 30: 271-278
Vothknecht UC, Kannangara CG and von Wettstein D (1998) Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. Phytochemistry 47: 513-519
Walker CJ and Weinstein JD (1991) In vitro assay of the chloro-phyll biosynthetic enzyme magnesium chelatase: Resolution of the activity into soluble and membrane bound fractions. Proc Nat Acad Sci USA 88: 5789-5793
Walker CJ, Mansfield KE, Smith KM and Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl func-tionality of the protochlorophyllide isocyclic ring. Biochem J 257: 599-602
Walker CJ, Castelfranco PA and Whyte BJ (1991a) Synthesis of divinyl protochlorophyllide. Enzymological properties of the magnesium-protoporphyrin IX monomethyl ester oxida-tive cyclase system. Biochem J 276: 691-697
Walker CJ, Castelfranco PA and Whyte BJ (1991b) Synthesis of divinyl protochlorophyllide. Enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J 276: 691-697
Walker CJ, Kannangara CG and vonWettstein D (1997) Identifi-cation of xantha l-35 and viridis k-23 as mutants of the Mg-protoporphyrin monomethyl ester cyclase of chlorophyll syn-thesis in barley (Hordeum vulgare). Plant Physiol 114: 708-708
Wang WY, Wang WL, Boynton JE and Gillham NW (1974) Ge-netic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of mutants at two loci mediating the conversion of protoporphyrin-IX to magnesium protoporphyrin. J Cell Biol 63: 806-823
Whyte BJ and Castelfranco PA (1993) Further observations on the magnesium-protoporphyrin IX monomethyl ester (oxida-tive) cyclase system. Biochem J 290: 355-359
Whyte BJ and Griffiths WT (1993) 8-vinyl reduction and chloro-phyll a biosynthesis in higher plants. Biochem J 291: 939-944
Whyte BJ, Fijayan P and Castelfranco PA (1992) In vitro syn-thesis of protochlorophyllide: effects of magnesium and other cations on the reconstituted (oxidative) cyclase. Plant Physiol Biochem 30: 279-284
Wiktorsson B, Ryberg M, Gough S and Sundqvist C (1992) Isoelectric focusing of pigment-protein complexes solubilized from non-irradiated and irradiated prolamellar bodies. Physiol Plant 85: 659-669
Wiktorsson B, Engdahl S, Zhong LB, Boddi B, Ryberg M and Sundqvist C (1993) The effect of cross-linking of the sub-units of NADPH-protochlorophyllide oxidoreductase on the aggregational state of protochlorophyllide. Photosynthetica 29: 205-218
Wiktorsson B, Ryberg M and Sundqvist C (1996a) Aggrega-tion of NADPH-protochlorophyllide oxidoreductase-pigment complexes is favored by protein phosphorylation. Plant Phys-iol Biochem 34: 23-34
Wiktorsson B, Ryberg M and Sundqvist C (1996b) Aggrega-tion of NADPH-protochlorophyllide oxidoreductase-pigment complexes is favoured by protein phosphorylation. Plant Physiol Biochem 34: 23-34
Willows R (1999) Photosynthesis-making light of a dark situa-tion. Nature 397: 27-28
Willows RD (2003) Biosynthesis of chlorophylls from protopor-phyrin IX. Nat Prod Rep 20: 327-341
Willows RD and Beale SI (1998) Heterologous expression of the Rhodobacter capsulatus BchI, -D, and -H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. J Biol Chem 273: 34206-34213
Willows RD and Hansson M (2003) Mechanism, structure and regulation of magnesium chelatase. In: Kadish KM, Smith K and Guilard R (eds) The Porphyrin Handbook II, Vol 13, pp 1-48. Academic Press, San Diego
Willows RD, Gibson LCD, Kanangara CG, Hunter CN and von Wettstein D (1996) Three separate proteins constitute the mag-nesium chelatase of Rhodobacter sphaeroides. Eur J Biochem 235: 438-443
Willows RD, Lake V, Roberts TH and Beale SI (2003) Inacti-vation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. J Bacteriol 185: 3249-3258
Willows RD, Hansson A, Birch D, Al-Karadaghi S and Hansson M (2004) EM single particle analysis of the ATP-dependent BchI complex of magnesium chelatase: an AAA+ hexamer. J Struct Biol 146: 227-233
Younis S, Ryberg M and Sundqvist C (1995) Plastid develop-ment in germinating wheat (Triticum aestivum) is enhanced by gibberellic acid and delayed by gabaculine. Physiol Plant 95: 336-346.
Zsebo KM and Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata. Cell 37: 937-947
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer
About this chapter
Cite this chapter
Willows, R.D. (2007). Chlorophyll Synthesis. In: Wise, R.R., Hoober, J.K. (eds) The Structure and Function of Plastids. Advances in Photosynthesis and Respiration, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4061-0_15
Download citation
DOI: https://doi.org/10.1007/978-1-4020-4061-0_15
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-4060-3
Online ISBN: 978-1-4020-4061-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)