Skip to main content

FROM CAUSE TO EFFECT: USING NUMERICAL MODELLING TO UNDERSTAND ROCK SLOPE INSTABILITY MECHANISMS

  • Conference paper
Landslides from Massive Rock Slope Failure

Part of the book series: NATO Science Series ((NAIV,volume 49))

Abstract

Despite improvements in recognition, prediction and mitigation, rock slope instabilities still exact a heavy social, economic and environmental toll in mountainous regions. This is largely due to the complexity of the processes driving slope failure and our inadequate knowledge of the underlying mechanisms. Ever increasingly, experts are called upon to analyse and predict the stability of a given slope - assessing its risk, potential mode of failure and possible preventive/remedial measures. To do so, it has become essential for the practitioner to be cognisant of the slope analysis tools that are available and to fully understand their strengths and limitations. This paper examines the use of numerical modelling and its role in aiding rock slope stability analyses by providing key insights into potential stability problems, failure mechanisms and mitigative solutions. Several examples will be presented to demonstrate the cause and effect relationships shaped by geological conditions (e.g. rock mass structure, strength degradation through weathering), coupled hydro-mechanical processes, interactions with engineered structures, and aspects of progressive failure as they apply to massive natural rock slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benko, B. and Stead, D. (1998) The Frank slide: A reexamination of the failure mechanism, Canadian Geotechnical Journal 35 (2), 299–311.

    Article  Google Scholar 

  2. Bhandari, R.K. (1988) Special lecture: Some practical lessons in the investigation and field monitoring of landslides, in C. Bonnard (ed.), Proc. of the Fifth Int. Symp. on Landslides, Lausanne, A.A. Balkema, Rotterdam, pp. 1435–1457.

    Google Scholar 

  3. Bonzanigo, L., Eberhardt, E. and Loew, S. (2000) Measured response to a drainage adit in a deep creeping slide mass, in E. Bromhead et al (eds.), Landslides in Research, Theory and Practice: Proc. Of the 8th Int. Symp. on Landslides, Cardiff, Thomas Telford, London, pp. 151–156.

    Google Scholar 

  4. Bonzanigo, L., Eberhardt, E. and Loew, S. (2001) Hydromechanical factors controlling the creeping Campo Vallemaggia landslide, in M. Kühne et al. (eds.), United Engineering Foundation Int. Conf. on Landslides - Causes, Impacts and Countermeasures, Davos, Verlag Glückauf GmbH, Essen, pp. 13–22.

    Google Scholar 

  5. Coggan, J.S., Stead, D. and Eyre, J.M. (1998) Evaluation of techniques for quarry slope stability assessment, Transactions of the Institution of Mining and Metallurgy, Section B 107, 139–147.

    Google Scholar 

  6. Eberhardt, E. and Stead, D. (1998) Mechanisms of slope instability in thinly bedded surface mine slopes, in D.P. Moore and O. Hungr (eds.), Proc., 8th Int. Congress Int. Assoc. for Engineering Geology and the Environment, Vancouver, A.A. Balkema, Rotterdam, pp. 3011–3018.

    Google Scholar 

  7. Eberhardt, E., Stead, D., Coggan, J. and Willenberg, H. (2002) An integrated numerical analysis approach to the Randa rockslide, in J. Rybár et al. (eds.), Proc. of the 1st European Conf. on Landslides, Prague, A.A. Balkema, Lisse, pp. 355–362.

    Google Scholar 

  8. Gruner, U. (2001) Felssturzgefahr Chapf - üssri Urweid (Gemeinde Innertkirchen): Angaben zur Geologie und zu den Bewegungen, Kellerhaus + Haefeli AG, Bern, Report 3661KB4336.

    Google Scholar 

  9. Heim, A. (1932) Bergsturz und Menschenleben, Fretz and Wasmuth Verlag, Zurich.

    Google Scholar 

  10. Itasca (2000) UDEC - Universal Distinct Element Code (version 3.1). Itasca Consulting Group, Inc., Minneapolis.

    Google Scholar 

  11. Kennedy, B.A. and Niermeyer, K.E. (1970) Slope monitoring systems used in the prediction of a major slope failure at the Chuquicamata Mine, Chile, in P.W.J. Van Rensburg (ed.), Planning Open Pit Mines, Proceedings, Johannesburg, A.A. Balkema, Cape Town, pp. 215–225.

    Google Scholar 

  12. Löw, S. (1997) Wie sicher sind geologische Prognosen?, Bulletin für Angewandte Geologie 2 (2), 83–97.

    Google Scholar 

  13. Luginbuehl, M., Eberhardt, E. and Thuro, K. (2002) Primary sliding mechanisms in dipping interbedded conglomerates and marls, in J. Rybár et al. (eds.), Proc. of the First European Conf. on Landslides, Prague, A.A. Balkema, Lisse, pp. 387–392.

    Google Scholar 

  14. Stead, D. and Coggan, J. (2003) Numerical modelling of rock slopes using a total slope failure approach, in NATO Advanced Research Workshop - Massive Rock Slope Failure: New Models for Hazard Assessment, this volume.

    Google Scholar 

  15. Stead, D. and Eberhardt, E. (1997) Developments in the analysis of footwall slopes in surface coal mining, Engineering Geology 46(1), 41–61.

    Article  Google Scholar 

  16. Stead, D., Eberhardt, E., Coggan, J. and Benko, B. (2001) Advanced numerical techniques in rock slope stability analysis - Applications and limitations, in M. Kühne et al. (eds.), United Engineering Foundation Int. Conf. on Landslides - Causes, Impacts and Countermeasures, Davos, Verlag Glückauf GmbH, Essen, pp. 615–624.

    Google Scholar 

  17. Thuro, K., Eberhardt, E. and Gasparini, M. (2001) Adverse tunneling conditions arising from slope instabilities - A case history, in M. Kühne et al. (eds.), United Engineering Foundation Int. Conf. on Landslides - Causes, Impacts and Countermeasures, Davos, Verlag Glückauf GmbH, Essen, pp. 97–107.

    Google Scholar 

  18. Voight, B. and Kennedy, B.A. (1979) Slope failure of 1967-1969, Chuquicamata Mine, Chile, in B. Voight (ed.), Rockslides and Avalanches, 2: Engineering Sites, Elsevier Scientific Publishing Company, Amsterdam, pp. 595–632.

    Google Scholar 

  19. Willenberg, H., Spillmann, T., Eberhardt, E., Evans, K., Loew, S. and Maurer, H. (2002) Multidisciplinary monitoring of progressive failure processes in brittle rock slopes - Concepts and system design, in J. Rybár et al. (eds.), Proc. of the 1st European Conf. on Landslides, Prague, A.A. Balkema, Lisse, pp. 477–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

EBERHARDT, E. (2006). FROM CAUSE TO EFFECT: USING NUMERICAL MODELLING TO UNDERSTAND ROCK SLOPE INSTABILITY MECHANISMS. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure. NATO Science Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4037-5_4

Download citation

Publish with us

Policies and ethics