Skip to main content

LANDSLIDE-DRIVEN EROSION AND TOPOGRAPHIC EVOLUTION OF ACTIVE MOUNTAIN BELTS

  • Conference paper

Part of the book series: NATO Science Series ((NAIV,volume 49))

Abstract

Landslides play a crucial role in the erosion and topographic evolution of active mountain belts. They drive the expansion of drainage networks in uplifting rock mass, and counter the tectonic mass flux into orogenic systems. Moreover, landslides are the source of most sediment eroded from the continents, and the probability distributions of landslides and their triggers are a first-order control on the variability of the sediment flux from active mountain belts. Here, we illustrate these points with observations from he Southern Alps and other regions of New Zealand, the Central Taiwan Mountains, the Finisterre Mountains of Papua New Guinea and the eastern Greater Caucasus of Azerbaijan.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L. D., Silver, E. A., Anderson, R. S., Smith, R., Ingle, J. C., Kling, S. A., Haig, D., Small, E., Galewsky, J., and Sliter, W. (1997). Measurement of tectonic surface uplift in a young collisional mountain belt, Nature, 385, 501–507.

    Article  Google Scholar 

  2. Adler, R.J., Feldman, R.E., and Taqqu, M.S., 1998: A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Birkhauser, Boston.

    Google Scholar 

  3. Ahnert, F. (1970). Functional relationship between denudation, relief, and uplift in large, mid-latitude drainage basins, American Journal of Science, 268, 243–263.

    Article  Google Scholar 

  4. Baker, V. R. (1990). Spring sapping and valley network development, in Higgins, C. G., and Coates, D. R. (eds.), Groundwater Geornorphology: The Role of Subsurface Water in Earth-Surface Processes and Landforms, Geological Society of America Special Paper 252, pp. 235–265.

    Google Scholar 

  5. Beaumont, C., Fulsack, P., and Hamilton, J. (1991). Erosional control of active compressional orogens, in McClay, K. R. (ed.), Thrust Tectonics, Chapman and Hall, New York, pp. 1–18.

    Google Scholar 

  6. Benda, L., and Dunne, T. (1997). Stochastic forcing of sediment supply to channel networks from landsliding and debris flow, Water Resources Research, 33, 2,849–2,863.

    Google Scholar 

  7. Berner, R.A. (1993). Weathering and its effect on atmospheric CO2 over Phanerozoic time, Chemical Geology, 107, 373–374.

    Article  Google Scholar 

  8. Bradinoni, F., and Church, M. (submitted). Representing the landslide magnitude-frequency relation: Capilano River Basin, British Columbia, Earth Surface Processes and Landforms.

    Google Scholar 

  9. Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505–510.

    Article  Google Scholar 

  10. Clift, P., and Gaedicke, C. (2002). Accelerated mass flux to the Arabian Sea during the middle to late Miocene, Geology, 30, 207–210.

    Article  Google Scholar 

  11. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C. (submitted). Erosion of the Taiwan orogen, Nature.

    Google Scholar 

  12. Davies, H. L., Lock, J., Tiffin, J. L., Okuda, Y., Murakami, F., and Kisimoto, K. (1987). Convergent tectonics in the Huon Peninsula region, Papua New Guinea, Geo-Marine Letters, 7, 143–152

    Article  Google Scholar 

  13. Densmore, A. L., Anderson, R. S., McAdoo, B. G., and Ellis, M. A. (1997). Hillslope evolution by bedrock landslides, Science, 275, 369–372.

    Article  Google Scholar 

  14. Findlay, R. H., Arumba, J., Kagl, J., Nekitel, S., Ninkama, J., Kopi, G., Tekeve, B., and Abbott, L. D. (1998). The stratigraphy and tectonics of Markham, Geological Survey of Papua New Guinea Memoir 16.

    Google Scholar 

  15. Foley, M. G. (1980). Bed-rock incision by streams. Geological Society of America Bulletin, Part II, 91, 2,189–2,213.

    Google Scholar 

  16. Geli, L., Bard, P.Y., and Jullien, B. (1988) The effect of topography on earthquake ground motion: a review and new results, Bulletin of the Seismological Society of America, 78, 42–63.

    Google Scholar 

  17. Gomez, B., Page, M., Bak, P., and Trustrum, N. (2002). Self-organized criticality in layered, lacustrine sediments formed by landsliding, Geology, 30, 519–522.

    Article  Google Scholar 

  18. Goudie, A. (1995). The Changing Earth, Blackwell, Oxford.

    Google Scholar 

  19. Guzzetti, F., Malamud, B.D., Turcotte, D.L., and Reichenbach, P. (2002). Power-law correlations in landslide areas in central Italy, Earth and Planetary Science Letters, 195, 169–183.

    Article  Google Scholar 

  20. Hancock, G. S., Anderson, R. S., and Whipple, K. X. (1998). Beyond power: bedrock river incision process and form, in E. Wohl and K. Tinkler (eds.), Rivers Over Rock: Fluvial Processes in Bedrock Channels, American Geophysical Union, Geophysical Monograph 107, pp. 35–60.

    Google Scholar 

  21. Harp, E.L., and Jibson, R.W. (1996). Landslides triggered by the 1994 Northridge, California, earthquake, Bulletin of the Seismological Society of America, 96, 319–332.

    Google Scholar 

  22. Hartshorn, K., Hovius, N., Dade, W. B., and Slingerland, R. L. (2002). Climate-driven bedrock incision in an active mountain belt, Science, 297, 2,036–2,038.

    Article  Google Scholar 

  23. Hovius, N., Stark, C. P., and Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide mapping, Geology, 25, 231–234.

    Article  Google Scholar 

  24. Hovius, N., Stark, C. P., Tutton, M. A., and Abbott, L. D. (1998). Landslide-driven drainage network evolution in a pre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea, Geology, 26, 1071–1074.

    Article  Google Scholar 

  25. Hovius, N., Stark, C. P., Chu, H. T., and Lin, J. C. (2000). Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan, Journal of Geology, 108, 73–89.

    Article  Google Scholar 

  26. Howard, A. D., and Kerby, G. (1983). Channel changes in badlands. Geological Society of America Bulletin, 94, 739–752.

    Article  Google Scholar 

  27. Howard, A. D., Seidl, M. A., and Dietrich, W. E. (1994). Modeling fluvial erosion on regional to continental scales, Journal of Geophysical Research, 99, 13,971–13,986.

    Article  Google Scholar 

  28. Iverson, R.M., and Reid, M.E. (1992). Gravity-driven groundwater flow and slope failure potential 1: elastic effective stress model, Water Resources Research, 28, 925–938.

    Article  Google Scholar 

  29. Keefer, D.K. (1994). The importance of earthquake-induced landslides to long-term slope erosion and slope failure hazards in seismically active regions, Geomorphology, 10, 265–284.

    Article  Google Scholar 

  30. Kelsey, H. M. (1988). Formation of inner gorges, Catena, 15, 433–458.

    Article  Google Scholar 

  31. Koons, P. O. (1989). The topographic evolution of collisional mountain belts: a numerical look at the Southern Alps, New Zealand, American Journal of Science, 289, 1041–1069.

    Article  Google Scholar 

  32. Métivier, F., Gaudemer, Y., Tapponnier, P., and Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic, Geophysical Journal International, 137, 280–318.

    Article  Google Scholar 

  33. Milliman, J. D., and Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, Journal of Geology, 100, 525–544.

    Article  Google Scholar 

  34. Millot, R., Gaillardet, J., Dupré, B., and Allègre, C. J. (2002). The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield, Earth and Planetary Science Letters, 196, 83–98.

    Article  Google Scholar 

  35. Montgomery, D. R. (2001) Slope distributions, threshold hillslopes, and steady-state topography, American Journal of Science, 301, 432–454.

    Article  Google Scholar 

  36. Mongomery, D. R., and Foufoula-Georgiou, E. (1993). Channel network representation using digital elevation models. Water Resources Research, 29, 1,178–1,191.

    Google Scholar 

  37. Montgomery, D. R., and Brandon, M. T. (2002). Topographic controls on erosion rates in tectonically active mountain ranges, Earth and Planetary Science Letters, 201, 481–489.

    Article  Google Scholar 

  38. Page, M. J., Trustrum, N. A., and Dymond, J. R. (1994). Sediment budget to assess the geomorphic effect of a cyclonic storm, New Zealand, Geomorphology, 9, 169–188.

    Article  Google Scholar 

  39. Page, M. J., and Trustrum, N. A. (1997). A late Holocene lake sediment record of the erosion response to land use change in a steepland catchment, Zeitschrift für Geomorphologie, 41, 369–392.

    Google Scholar 

  40. Peart, M. (1991). The Kaiapit landslide – events and mechanisms, Papua New Guinea Geological Survey Report 91/2, 16 p.

    Google Scholar 

  41. Pelletier, J. D., Malamud, B. D., Blodgett, T. A., and Turcotte, D. L. (1997). Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides, Engineering Geology, 48, 254–268.

    Article  Google Scholar 

  42. Rothman, D. H., Grotzinger, J. P., and Flemings, P. (1994). Scaling in turbidite deposition, Journal of Sedimentary Research, A64, 59–67.

    Google Scholar 

  43. Schmidt, K. M., and Montgomery, D. R. (1995). Limits to relief, Science, 270, 617–620.

    Article  Google Scholar 

  44. Sklar, L., and Dietrich, W. E. (1998). River longitudinal profiles and bedrock incision models: stream power and the influence of sediment supply, in E. Wohl and K. Tinkler (eds.), Rivers Over Rock: Fluvial Processes in Bedrock Channels, American Geophysical Union, Geophysical Monograph 107, pp. 237–260.

    Google Scholar 

  45. Stark, C. P., and Hovius, N. (2001). The characterization of landslide size distributions, Geophysical research Letters, 28, 1,091–1,094.

    Article  Google Scholar 

  46. Swiss Re (2000). Natural catastrophes and man-made disasters in 1999, Swiss Reinsurance Company, Economic Research and Consulting, Zurich, Sigma No. 2/2000, 35 pp.

    Google Scholar 

  47. Trustrum, N. A., Gomez, B., Page, M. J., Reid, L. M., and Hicks, D. M. (1999). Sediment production, storage and output: the relative role of large magnitude events in steepland catchments, Zeitschrift fur Geomorphologie, Supplement 115, 71–86.

    Google Scholar 

  48. Water Resources Agency (1970–2002). Hydrological year book of Taiwan Republic of China. Taipei: Ministry of Economic Affairs, Taiwan.

    Google Scholar 

  49. Whipple, K. X., Hancock, G. S., and Anderson, R. S. (2000). River incision into bedrock: mechanics, and relative efficacy of plucking, abrasion, and cavitation, Geological Society of America Bulletin, 112, 490–503.

    Article  Google Scholar 

  50. Willett, S. D. (1999). Orogeny and orography: The effects of erosion on the structure of mountain belts, Journal of Geophysical Research, 104, 28,957–28,981.

    Article  Google Scholar 

  51. Willett, S. D., and Brandon, M. T. (2002). On steady states in mountain belts, Geology, 30, 175–178.

    Article  Google Scholar 

  52. Wolman, J. G., and Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes, Journal of Geology, 68, 54–74.

    Article  Google Scholar 

  53. Yu, S. B., Chen, H. Y., and Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41–59.

    Article  Google Scholar 

  54. Zhang, P., Molnar, P., and Downs, W. R. (2001). Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates, Nature, 410, 891–897.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

HOVIUS, N., STARK, C. (2006). LANDSLIDE-DRIVEN EROSION AND TOPOGRAPHIC EVOLUTION OF ACTIVE MOUNTAIN BELTS. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure. NATO Science Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4037-5_30

Download citation

Publish with us

Policies and ethics