Skip to main content

LANDSLIDES FROM MASSIVE ROCK SLOPE FAILURE AND ASSOCIATED PHENOMENA

  • Conference paper

Part of the book series: NATO Science Series ((NAIV,volume 49))

Abstract

Landslides from massive rock slope failure (MRSF) are a major geological hazard in many parts of the world. Hazard assessment is made difficult by a variety of complex initial failure processes and unpredictable post-failure behaviour, which includes transformation of movement mechanism, substantial changes in volume, and changes in the characteristics of the moving mass. Initial failure mechanisms are strongly influenced by geology and topography. Massive rock slope failure includes rockslides, rock avalanches, catastrophic spreads and rockfalls. Catastrophic debris flows can also be triggered by massive rock slope failure. Volcanoes are particularly prone to massive rock slope failure and can experience very large scale sector collapse or much smaller partial collapse. Both these types of failures may be transformed into lahars which can travel over 100 km from their source. MRSF deposits give insight into fragmentation and emplacement processes. Slow mountain slope deformation presents problems in interpretation of origin and movement mechanism. The identification of thresholds for the catastrophic failure of a slow moving rock slope is a key question in hazard assessment. Advances have been made in the analysis and modeling of initial failure and post-failure behaviour. However, these studies have been retrodictive in nature and their true predictive potential for hazard assessment remains uncertain yet promising. These processes, which can be instantaneous or delayed, include the formation and failure of landslide dams and the generation of landslide tsunamis. Both these processes extend potential damage beyond the limits of landslide debris. The occurrence of MRSF forms orderly magnitude and frequency relations which can be characterized by robust power law relationships. MRSF is increasingly recognized as being an important process in landscape evolution which provides an essential context for enhanced hazard assessment. Secondary processes associated with MRSF are an important component of hazard.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   469.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, P.L., Kerr, D.R., Borron, S.E., Washburn, J.L., and Rightmer, D.A. (2002) Neogene sturzstrom deposits, Split Mountain area, Anza-Borrego Desert State Park, California, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 379–400.

    Google Scholar 

  2. Abele, G. (1974) Bergstürze in den Alpen, ihre Verbeitung, Morphologie und Folgeerscheinungen, Wissensch. Alpenverein 25, 1–230.

    Google Scholar 

  3. Abele, G. (1997) Rockslide movement supported by the mobilization of groundwater-saturated valley floor sediments, Zeits. für Geomorph. 41, 1–20.

    Google Scholar 

  4. Adams, J. (1981) Earthquake-dammed lakes in New Zealand, Geology 9, 215–219.

    Article  Google Scholar 

  5. Adushkin, V.V. (2000) Explosive initiation of creative processes in Nature, Combustion, Explosion, and Shock Waves, 36, 695–703.

    Article  Google Scholar 

  6. Adushkin, V.V. and Spungin, V.G. (1998) The influence (of) granular structure of rockfalls on their spreading along mountain slopes, in H-P. Rossmanith (ed.) Proc. 3rd Int. Conf. on Mechanics of Jointed and Faulted Rock, Vienna, Austria p. 541–546., A.A. Balkema, Rotterdam.

    Google Scholar 

  7. Adushkin, V.V., Zykov, Y.N., and Fedotov, S.A. (1995) Mechanism of volcanic slope failure; assessment of potential collapse and debris avalanches at Klyuchevskoi volcano, Volc. Seism. 16, 667–684.

    Google Scholar 

  8. Agliardi, F. and Crosta, G.B. (2003) High resolution three-dimensional numerical modeling of rockfalls, Int. Jo. of Rock Mech. and Mining Sci. 40, 455–471.

    Article  Google Scholar 

  9. Agliardi, F., Crosta, G., and Zanchi, A. (2001) Structural constraints on deep-seated slope deformation kinematics, Eng. Geol. 59, 83–102.

    Article  Google Scholar 

  10. Aida, I. (1975) Numerical experiments of the tsunami associated with the collapse of Mt. Mayuyama in 1792, Jo. Seismol. Soc. Jpn 28, 449–460 (in Japanese).

    Google Scholar 

  11. Almagià, R. (1910) La grande frana di Roccamontepiano (prov. Di Chieti) (24 giugno 1765), Riv. Abruzz. di Sci. Lett. ed Arti, 25, 337–349.

    Google Scholar 

  12. Azzoni, A. and de Freitas, M.H. (1995) Experimentally gained parameters decisive for rock fall analysis, Rock Mech Rock Eng, 28, 111–124

    Article  Google Scholar 

  13. Azzoni, A., La Barbera, G., Zaninetti, A. (1995) Analysis and prediction of rock falls using a mathematical model, Int. Jo. Rock Mech. Min. Sci., 32, 709–724.

    Article  Google Scholar 

  14. Barla, G., Dutto, F., and Mortara, G. (2000) Brenva Glacier rock avalanche of 18 January 1997 on the Mount Blanc Range, northwest Italy, Landslide News 13, 2–5.

    Google Scholar 

  15. Becher, J. (1859) Letter addressed to R.H. Davies, Esquire, Secretary to the Government of the Punjab and its ependencies, Jo. Asiatic Soc. of Bengal, 28, 219–228.

    Google Scholar 

  16. Belousov, A., Belousova, and Voight, B. (1999) Multiple edifice failure, debris avalanches and asssociated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia, Bull. Volcanol. 61, 324–342.

    Article  Google Scholar 

  17. Benko, B. and Stead, D. (1998) The Frank Slide: a reexamination of the failure mechanism, Can. Geotech. Jo. 35, 299–311.

    Article  Google Scholar 

  18. Bhasin, R. and Kaynia, A.M. In Press. Static and dynamic simulation of a 700-m high rock slope in western Norway. Eng. Geol.

    Google Scholar 

  19. Birch, G.P., and Warren, C.D. (1996). The cliffs behind the Channel Tunnel workings, in C.S. Harris, M.B. Hart, P.M. Varley, and C.D. Warren, (eds.), Engineering Geology of the Channel Tunnel, Thomas Telford, London, pp. 76–87.

    Google Scholar 

  20. Bishop, K. (1997) Miocene rock-avalanche deposits, Halloran/Silurian Hills area, southeastern California, Env. Eng. Geosci. 3, 501–512.

    Google Scholar 

  21. Bjerrum, L. and Jorstad, F.A. (1968). Stability of rock slopes in Norway. Norwegian Geotechnical Institute Publication No. 79, pp. 1–11.

    Google Scholar 

  22. Blanc, A., Durville, J-L., Follacci, J-P., Gaudin, B., and Pincent, B. (1987) Methodes de surveillance d’un glissement de terrain de tres grande ampleur : La Clapiere, Alpes Maritimes, France, Bull. Int. Assoc. of Eng. Geol., 35, 37–46.

    Article  Google Scholar 

  23. Blikra, L.H., and Nemec, W. (1998) Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record, Sedimentology 45, 909–959.

    Article  Google Scholar 

  24. Bogachkin, B.M. and Rogozhin, Y.A. (1994) Rock avalanches on the southern slope of the Greater Caucasus Range produced by the Racha earthquake, Trans. Russ. Acad. Sci., 326, 29–33.

    Google Scholar 

  25. Bovis, M.J. and Evans, S.G. (1995) Rock slope movements along the Mount Currie “fault scarp”, southern Coast Mountains, British Columbia, Can. Jo. Earth Sci. 32, 2015–2020.

    Google Scholar 

  26. Bovis, M.J. and Evans, S.G. (1996) Extensive deformations of rock slopes in southern Coast Mountains, southwest British Columbia, Canada, Eng. Geol. 44, 163–182.

    Article  Google Scholar 

  27. Bozzolo, D. and Pamini, R. (1986) Simulation of rock falls down a valley side, Acta Mech., 63, 113–130

    Article  Google Scholar 

  28. Bozzolo, D., Pamini, R., and Hutter, K. (1988) Rockfall analysis-a mathematical model and its test with field data, Proc. 5th Int. Symp. on Landslides, Lausanne, v. 1, pp. 555–560.

    Google Scholar 

  29. Brabb, E.E. and Harrod, B.L. (Editors) (1989) Landslides: extent and economic significance. A.A. Balkema, Rotterdam.

    Google Scholar 

  30. Bromhead, E.N., Coppola, L., and Rendell, H.M. (1996) Valley-blocking landslide dams in the eastern Italian Alps, Proc. 7th Int. Symp. on Landslides, Trondheim, v. 2, pp. 655–660.

    Google Scholar 

  31. Bruce, I.G. and Cruden, D.M. (1980) Simple rockslides at Jonas Ridge, Alberta, Canada, Proc. 3rd. Intl. Symposium on Landslides, New Delhi, v. 1, p. 185–190.

    Google Scholar 

  32. Brückl, E., Brückl, J., and Heuberger, H. (2001) Present structure and prefailure topography of the giant rockslide of Kofels, Zeits. fur Gletscherkunde und Glazialgeol., 37, 49–79.

    Google Scholar 

  33. Budetta, P. and Santo, A. (1994). Morphostructural evolution and related kinematics of rockfalls in Campania (southern Italy): a case study, Eng. Geol. 36, 197–210.

    Article  Google Scholar 

  34. Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R., and Duncan, C. (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature 379, 505–510.

    Article  Google Scholar 

  35. Burchfiel, B.C. (1966) The Tin Mountain landslide, southeastern California, and the origin of megabreccia, GSA Bull., 77, 95–100

    Google Scholar 

  36. Burgisser, H.M., Gansser, A., and Pika, J. (1982) Late Glacial lake sediments of the Indus valley area, northwestern Himalayas, Eclog. Geol. Helv. 75, 51–63

    Google Scholar 

  37. Butler, R.W.H., and Prior, D.J. (1988) Tectonic controls on the uplift of the Nanga Parbat Massif, Pakistan Himalayas, Nature 333, 247–256.

    Article  Google Scholar 

  38. Butler, R.W.H., Owen, L., and Prior, D.J. (1988) Flashfloods, earthquakes and uplift in the Pakistan Himalayas, Geology Today 4, 197–201.

    Google Scholar 

  39. Campbell, C.S. (1989) Self-lubrication for long run-out landslides. Jo. Geol., 97, 653–665

    Google Scholar 

  40. Campbell, C.S., Cleary, P.W., and Hopkins, M. (1995) Large-scale landslide simulations, global deformation, velocities and basal friction, Jo. Geophys. Res. 100B, 8267–8283.

    Article  Google Scholar 

  41. Capra, L. and Macías, J.L. (2002) The cohesive Naranjo debris-flow deposit (10km3): a dam breakout flow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima volcano (Mexico), Jo. of Volc. And Geotherm. Res., 117, 213–235.

    Article  Google Scholar 

  42. Capra, L., Macías, J.L., Scott, K.M., Abrams, M., and Garduño-Monroy, V.H. (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico - behaviour, and implications for hazard assessment. Jo. of Volc. and Geotherm. Res., 113, 81–110.

    Article  Google Scholar 

  43. Carrasco-Nunez, G., Vallance, J.W., and Rose, W.I. (1993) A voluminous avalanche-induced lahar from Citlaltépetl volcano, Mexico: implications for hazard assessment, Jo. Volc. Geotherm. Res. 59, 35–46

    Article  Google Scholar 

  44. Casagli, N., Ermini, L., and Rosati, G. (2002) Determining grain size distribution of the material composing landslide dams in the Northern Appennines: sampling and processing methods, Eng. Geol. 69, 83–97.

    Article  Google Scholar 

  45. Cassassa, G. and Marangunic, C. (1993) The 1987 Río Colorado rockslide and debris flow, Central Andes, Chile, Bull. Ass. Eng. Geol. 30, 321–330.

    Google Scholar 

  46. Chau, K.T., Wong, R.H.C., and Wu, J.J. (2002) Coefficient of restitution and rotational motions of rockfall impacts, Int. Jo. Rock Mech. Min. Sci., 39, 69–77.

    Article  Google Scholar 

  47. Chau, K.T., Wong, R.H.C., & Lee, C.F. (2003). Rockfall hazard analysis for Hong Kong based on rockfall inventory. Rock Mech. and Rock Eng. 36, 383–408.

    Article  Google Scholar 

  48. Chen, T-C., Lin, M-L., and Hung, J-J. (2003) Pseudostatic analysis of Tsao-Ling rockslide caused by Chi-Chi earthquake, Eng. Geol. 71, 31–47.

    Article  Google Scholar 

  49. Chigira, M. (1992) Long-term gravitational deformation of rocks by mass rock creep, Eng. Geol., 32, 157–184.

    Article  Google Scholar 

  50. Chigira, M. (2000) Geological structures of large landslides in Japan, Jo. Nepal Geol. Soc. 22, 497–504.

    Google Scholar 

  51. Chigira, M. and Kiho, K. (1994) Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, Central Japan, Eng. Geol. 38, 221–230.

    Article  Google Scholar 

  52. Choffat, P. (1929) L’écroulement d’Arvel (Villeneuve) de 1922, Bull. de la Soc. Vaud. Sci. Nat. 57, 5–28.

    Google Scholar 

  53. Code, J.A. and Sirnhindi, S. (1986) Engineering implications of impoundment of the Upper Indus river, Pakistan, by an earthquake-induced landslide. In R.L. Schuster (Ed.) Landslide Dams :processes, risk, and mitigation, Geotechnical Special Publication No. 3, American Society of Civil Engineers, New York, p. 97–109.

    Google Scholar 

  54. Cornell, J. (1982) The great international disaster book, 3rd. Edition, Charles Scribner, New York, 472 p.

    Google Scholar 

  55. Corominas, J. (1996) The angle of reach as a mobility index for small and large landslides, Can. Geotech. Jo. 33, 260–271.

    Google Scholar 

  56. Costa, J.E. (1988) Floods from dam failures In V.R. Baker, R.C. Kochel, and P.C. Patton (Editors) Flood Geomorpholgy, J. Wiley and Sons, New York, p. 439–463.

    Google Scholar 

  57. Costa, J.E. and Schuster, R.L. (1988) The formation and failure of natural dams, GSA Bull. 100, 1054–1068.

    Google Scholar 

  58. Crandell, D.R. (1971) Postglacial lahars from Mount Rainier Volcano, Washington. United States Geol. Surv. Prof. Paper 677, 73 p.

    Google Scholar 

  59. Crandell, D.R. (1989) Gigantic debris avalanche of Pleistocene age from ancestral Mount Shasta volcano, California, and debris-avalanche hazard zonation, United States Geol. Surv. Bulletin 1861, 32 p.

    Google Scholar 

  60. Crandell, D.R. and Fahnestock, R.K. (1965) Rockfalls and avalanches from Little Tahoma Peak on Mount Rainier, Washington, United States Geol. Surv. Bull 1221-A, 30 p.

    Google Scholar 

  61. Crandell, D.R. and Waldron, H.H. (1956) A recent volcanic mudflow of exceptional dimensions from Mt. Rainier, Washington, Am. Jo. Sci. 254, 349–362

    Article  Google Scholar 

  62. Crescenti, U., D’Alessandro, L., and Genevois, R. (1987) La Ripa di Montrepiano (Abruzzo): un primo esame delle caratteristiche geomorfologieche in rapporto alla stabilità, Mem. della Soc. Geol. Ital. 37, 775–787.

    Google Scholar 

  63. Crescenti, U., Dramis, F., Prestiniinzi, A., and Sorriso-Valvo, M. (1994) Deep-seated gravitational slope deformations and large-scale landslides in Italy, Dip. di Sci., Univ G. D’Annunzio, Pescara, Italia, 71 p.

    Google Scholar 

  64. Crosta, G.B. and Agliardi, F. (2003) Failure forecast for large rock slides by surface displacement measurements, Can. Geotech. Jo., 40, 176–191.

    Article  Google Scholar 

  65. Cruden, D.M. (2000) Some forms of mountain peaks in the Canadian Rockies controlled by their rock structure, Quat. Int. 68-71, 59–75.

    Article  Google Scholar 

  66. Cruden, D.M. and Antoine, P. (1984) The slide from Mt. Granier, Isere and Savoie, France, on November 24, 1248, Proc. 4th Int. Symp. on Landslides, v.1, p. 475–481.

    Google Scholar 

  67. Cruden, D.M. & Hu, X.Q. (1993) Exhaustion and steady state models for predicting landslide hazards in the Canadian Rocky Mountains. Geomorphology 8, 279–285.

    Article  Google Scholar 

  68. Cruden, D.M. and Hu, X.Q. (1994) Topples on underdip slopes in the Highwood Pass, Alberta, Canada, Quart. Jo. Eng. Geol. 27, 57–68.

    Google Scholar 

  69. Cruden, D.M. and Hu, X.Q. (1996) Hazardous modes of rock slope movement in the Canadian Rockies, Env. Eng. Geosci. 2, 507–516.

    Google Scholar 

  70. Cruden. D.M., and Hungr, O. (1986) The debris of the Frank Slide and theories of rockslideavalanche mobility, Can. Jo. Earth Sci. 23, 425–432.

    Article  Google Scholar 

  71. Cruden, D.M. and Lu, Z.Y. (1992) The rockslide and debris flow from Mount Cayley BC in June 1984, Can. Geotech. Jo. 29, 614–626.

    Google Scholar 

  72. Cruden, D.M. and Varnes, D.J. (1996) Landslide types and processes. In A.K. Turner and R.L. Schuster (Editors) Landslides:Investigation and Mitigation. Transportation Research Board Special Report 247, p. 36–75. National Academy Press, Washington, D.C.

    Google Scholar 

  73. Cundall, P.A. (1987) Distinct element models of rock and soil structure, In E.T. Brown (Ed.) Analytical and Computational Methods in Engineering Rock Mechanics, Allen and Unwin, London, p. 129–163.

    Google Scholar 

  74. Dade, W.B. and Huppert, H.E. (1998) Long-runout rockfalls, Geology 26, 803–806.

    Article  Google Scholar 

  75. D’Alessandro, Genevois, R., Berti, M., Urbani, A., and Tecca, P.R. (2002) Geomorphology, stability analyses and the stabilization works on the Montepiano travertinous cliff (Central Italy), In R.J. Allison (ed.) Applied Geomorphology: Theory and Practice, John Wiley and Sons, pp. 21–38.

    Google Scholar 

  76. Del Prete, M. and Hutchinson, J.N. (1988) La frana di Senise del 267–1986 nel quadro morfologico del verante meridionale della collina Timpone, Riv. Italiana di Geotec., 22, 7–33.

    Google Scholar 

  77. Dethier, D.P., and Reneau, S.L. (1996) Lacustrine chronology links late Pleistocene climate change and mass movements in northern New Mexico, Geology 24, 539–542.

    Article  Google Scholar 

  78. Dikau, R., Schrott, L., Brunsden, D., and Ibsen, M.-L. (1996) Landslide Recognition. J. Wiley, New York, 251 pp.

    Google Scholar 

  79. Drew, F. (1875) The Jummo and KashmirTerritories: a geographical account. Stanford, London, 568 p.

    Google Scholar 

  80. Duperret, A., Genter, A., Mortimore, R.N., Delacourt, B., and De Pomerai, R.D. (2002) Coastal rock cliff erosion by collapse at Puys, France : the role of impervious marl seams within Chalk of NW Europe. Jo. Coastal Res. 18, 52–61.

    Google Scholar 

  81. Dussauge, C., Grasso, J-R., & Helmstetter, A. (2003) Statistical analysis of rockfall volume distributions: implications for rockfall dynamics. Journal of Geophysical Research 108, B6, ETG 2–1 to ETG 2–11.

    Article  Google Scholar 

  82. Dussauge-Peisser, C., Helmstetter, A., Grasso, J-R., Hantz, D., Desvarreux, P., Jeannin, M., & Giraud, A. (2002) Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Natural Hazards and Earth System Sciences 2: 15–26.

    Article  Google Scholar 

  83. Eberhart-Phillips, D., Haeussler, P.J., Freymueller, J.T., Frankel, A.D., Rubin, C.M., Craw, P., Ratchovski, N.A., Anderson, G., Carver, G.A., Crone, A.J., Dawson, T.E., Fletcher, H. Hansen, R., Harp, E.L., Harris, R.A., Hill, D.P., Hreinsdottir, S., Jibson, R.W., Jones, L.M., Kayen, R., Keefer, D.K., Larsen, C.F., Moran, S.C., Personius, S.F., Plafker, G., Sherrod, B., Sieh, K., Sitar, N., and Wallace, W.K. (2003) The 2002 Denali Fault Earthquake, Alaska: a large magnitude, slip-partitioned event, Science 300, 1113–1118.

    Article  Google Scholar 

  84. Eisbacher, G.H., (1979) Cliff collapse and rock avalanches (sturzstroms) in the Mackenzie Mountains, northwestern Canada, Can. Geot. Jo. 16, 309–334.

    Article  Google Scholar 

  85. Eisbacher, G.H.and Clague, J.J. (1984) Destructive mass movements in high mountains: hazard and management, Geological Survey of Canada Paper 84–16, 230 p.

    Google Scholar 

  86. Endo, K., Sumita, M., Machida, M., and Furuichi, M. (1989) The 1984 collapse and debris avalanche deposits of Ontake Volcano, central Japan. In Latter, J.H. (Ed) Volcanic Hazards, Springer-Verlag, Berlin, p. 210–229.

    Google Scholar 

  87. Enegren, E.G. and Imrie, A.S. (1996) Ongoing requirements for monitoring and maintaining a large remediated rockslide, Proceedings, 7th. International Symposium on Landslides, Trondheim, Norway, v. 3, p. 1677–1682.

    Google Scholar 

  88. Ermini, L. and Casagli, N. (2003) Prediction of the behaviour of landslide dams using a geomorphological dimensionless index, Earth Surf. Processes Landforms 28, 31–47.

    Article  Google Scholar 

  89. Evans, R.S. (1981) An analysis of secondary toppling rock failures-the stress redistribution method. Quart. Jo. Eng. Geol. 14: 77–86.

    Google Scholar 

  90. Evans, S.G. (1984) Landslides in Tertiary basaltic successions. Proceedings, IV International Symposium on Landslides, Toronto, v.1, 503–510.

    Google Scholar 

  91. Evans, S.G. (1989a) Rock avalanche run-up record, Nature 340, 271.

    Article  Google Scholar 

  92. Evans (1989b) The 1946 Mount Colonel Foster rock avalanche and associated displacement wave, Vancouver Island, British Columbia. Can. Geotech. Jo., 26, 447–452.

    Google Scholar 

  93. Evans, S.G., and Clague, J.J. (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments, Geomorphology 10, 107–128.

    Article  Google Scholar 

  94. Evans, S.G., and Clague, J.J. (1998) Rock avalanche from Mount Munday, Waddington Range, British Columbia, Canada, Landslide News 11, 23–25.

    Google Scholar 

  95. Evans, S.G. and Clague, J.J. 1999. Rock avalanches on glaciers in the Coast and St. Elias Mountains, British Columbia. In Slope stability and landslides, Proceedings, 13th Annual Vancouver Geotechnical Society Symposium, p. 115–123.

    Google Scholar 

  96. Evans, S.G. and DeGrafff, J.V. (Editors) (2002) Catastrophic landslides: effects, occurrences and mechanisms. Geol. Soc. Am. Rev. in Eng. Geol.33 v. 15, 412p.

    Google Scholar 

  97. Evans, S.G. and Hungr, O. (1993) The analysis of rockfall hazard at the base of talus slopes. Can. Geotech. Jo. 30, 620–636.

    Google Scholar 

  98. Evans, S.G., Aitken, J.D., Wetmiller, R.J., and Horner, R.B. (1987) A rock avalanche triggered by the October 1985 North Nahanni Earthquake, District of Mackenzie, N.W.T., Can. Jo. Earth Sci. 24, 176–184.

    Google Scholar 

  99. Evans, S.G., Clague, J.J., Woodsworth, G.J., and Hungr, O. (1989) The Pandemonium Creek rock avalanche, British Columbia, Can. Geotech. Jo. 26, 427–446

    Google Scholar 

  100. Evans, S.G., Couture, R., Locat, J., Hadjigeorgiou, J.,Antoine, P., and Brugnot, G. (1997) Two complex cataclinal slope failures in Paleozoic limestones, Rocky Mountains, Jasper National Park, Alberta, Proc. 50 th Can. Geotech. Conf., Ottawa. Preprint Volume v. 1, pp. 102–109.

    Google Scholar 

  101. Evans, S.G., Hungr, O., and Clague, J.J. (2001) Dynamics of the 1984 rock avalanche and associated debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes, Eng. Geol. 61, 29–51.

    Article  Google Scholar 

  102. Evans, S.G., Hungr, O. and Enegren, E. G. (1994) The Avalanche Lake rock avalanche, Mackenzie Mountains, Northwest Territories, Canada; description, dating, and dynamics, Can. Geotech. Jo. 31, 749–768.

    Google Scholar 

  103. Fauque, L. and Strecker, M.R. (1988) Large rock avalanche deposits (Sturzsröme, sturzstroms) at Sierra Aconquija, northern Sierra Pampeanas, Argentina, Eclog. Geol. Helv. 81, 579–592.

    Google Scholar 

  104. Fauque, L. and Tciligharian, P. (2002) Villavil rockslides, Catamarca Province, Argentina, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 303–324.

    Google Scholar 

  105. Finlay, P.J., Mostyn, G.R., and Fell, R. (1999) Landslide risk assessment: prediction of travel distance, Can. Geot. Jo. 36, 556–562.

    Article  Google Scholar 

  106. Follacci, J-P. (1987) Les mouvements du versant de la Clapière à Saint-Etienne-de-Tinée (Alpes- Maritimes). Bull. liason Lab. Pont et Chaussee, 150, 31–46.

    Google Scholar 

  107. Follacci, J-P., Guardia, P., and Ivaldi, J-P., 1988. Le glissement de la Clapière (Alpes Maritimes, France) dans son cadre géodynamique, Proc. 5th Int. Symp. on Landslides, v. 2, pp. 1323–1327.

    Google Scholar 

  108. Fort, M. (1987) Sporadic morphogenesis in a continental subduction setting : an example from the Annapurna Range, Nepal Himalaya. Zeits. fur Geomorph. Suppl.-Bd. 63, 9–36.

    Google Scholar 

  109. Fort, M. (2000) Glaciers and mass wasting processes: their influence on the shaping of the Kali Gandaki valley (higher Himalaya of Nepal). Quat. International, 65/66, 101–119

    Article  Google Scholar 

  110. Fort, M. and Peulvast, J-P. (1995) Catastrophic mass-movements and morphogenesis in the Peri- Tibetan Ranges: examples from West Kunlun, East Pamir, and Ladakh, in O. Slaymaker (ed.) Steepland Geomorphology J.Wiley & Sons, New York, pp. 171–198.

    Google Scholar 

  111. Fort, M. Burbank, D.W., and Freytet, P. (1989) Lacustrine sedimentation in a semiarid alpine setting: an example from Ladakh, northwest Himalaya, Quat. Res., 31, 332–350.

    Article  Google Scholar 

  112. Francis, P.W. and Wells, G.L. (1988) Landsat Thematic Mapper observations of debris avalanche deposits in the Central Andes, Bull. Volc., 50, 258–278.

    Article  Google Scholar 

  113. Friedman, S.J. (1997) Rock-avalanche elements of the Shadow Valley Basin, eastern Mojave Desert, California: processes and problems, Jo. Sed. Res. 67, 792–804.S

    Google Scholar 

  114. Fritz, H.M., Hager, W.H., and Minor, H-E. (2001) Lituya Bay case: rockslide impact and wave run-up, Science of Tsunami Hazards 19, 3–22.

    Google Scholar 

  115. Fuganti, A (1969) Studio geologico di sei grandi frane di roccia nella regione Trentino-Alto Adige, Mem. del Museo Tridentino di Scienze Naturali, 17, 63–128.

    Google Scholar 

  116. Fuji, Y. (1969) Frequency distribution of the magnitude of the landslides caused by heavy rainfall. Journal of the Seismological Society of Japan 22, 244–247.

    Google Scholar 

  117. Gaziev, E. (1984) Study of the Usoi Landslide in Pamir. Proc. 4 th Int. Symp. on Landslides, Toronto, v. 1, p. 511–515.

    Google Scholar 

  118. Ghirotti, M. (1995) L’Antica frana del M. Borgá e primi resultati del monitoraggio dell’area di prá di salta (Casso, Pn), Quad. di geologia Applic. Riccione, 1, 123–130.

    Google Scholar 

  119. Gillon, M.D. and Hancox, G.T. (1992) Cromwell Gorge Landslides - a general overview, Proc. 6th Int. Symp. on Landslides, Balkema, Rotterdam, v. 1, 83–120.

    Google Scholar 

  120. Giraud, A., Rochet, L., and Antoine, P. (1990) Processes of slope failure in crystallophyllian formations. Eng. Geol., 29, 241–253.

    Article  Google Scholar 

  121. Glancy, P.A. and Bell, J.W. (2000) Landslide-induced floodiing at Ophir Creek, United States Geol. Surv. Prof. Paper 1617.

    Google Scholar 

  122. Glass, J.H. (1896) The great landslip at Gohna, in Garhwal, and the measures adopted to prevent serious loss of life, Jo. of the Society of Arts, 44, 431–445.

    Google Scholar 

  123. Glastonbury, J. and Fell, R. (2000) Report on the analysis of “rapid” natural rock slope failures, University of New South Wales School of Civil and Environmental Engineering UNICIV Report No. R-390, 154 p. and Appendices.

    Google Scholar 

  124. Govi, M., Gulla, G., and Nicoletti, P.G. (2002) Val Pola rock avalanche of July 28, 1987, in Valtellina (Central Italian Alps), in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 71–89.

    Google Scholar 

  125. Griggs, R.F. (1920) The Great Mageik Landslide, Ohio Jo. of Sci. 20, 325–354.

    Google Scholar 

  126. Gutenberg, B. and Richter, C.F. (1954) Seismicity of the Earth, Princeton University Press, Princeton, 440 p.

    Google Scholar 

  127. Guzzetti, F., Cardinali, M., and Reichenbach, P. (1996) The influence of structural setting and lithology on landslide type and pattern, Env. Eng. Geosci. 2, 531–555.

    Google Scholar 

  128. Guzzetti, F., Malamud, B.D., Turcotte, D.L., & Reichenbach, P. (2002) Power-law correlations of landslide areas in central Italy, Earth and Planetary Science Letters 195, 169–183.

    Article  Google Scholar 

  129. Guzzetti, F., Reichenbach, P. & Wieczorek, G.F. (2003) Rockfall hazard and risk assessment in the Yosemite valley, California, USA, Natural Hazards and Earth System Sciences 3, 491–503.

    Article  Google Scholar 

  130. Hancox, G.T. and Perrin, N.D. (1994) Green Lake Landslide: a very large ancient rock slide in Fiordland, New Zealand. Proc. 7 th IAEG Cong., v. 3, 1677–1689.

    Google Scholar 

  131. Harp, E.L., Jibson, R.W., Kayen, R.F., Keefer, D.K., Sherrod, B.L., Carver, G.A., Collins, B.D., Moss, R.E.S., and Sitar, N. (2003) Landslides and liquefaction triggered by the M 7.9 Denali Fault earthquake of 3 November 2002, GSA Today 13, 4–10.

    Article  Google Scholar 

  132. Harrison, J.V. and Falcon, N.L. (1938) An ancient landslip at Saidmarreh in southwestern Iran, Jo. Geol., 46, 296–309.

    Article  Google Scholar 

  133. Hauge, T.A. (1985) Gravity-spreading origin of the Heart Mountain allochton, northwestern Wyoming; GSA Bulletin, 96, 1440–1456.

    Google Scholar 

  134. Hauser, A. (2002) Rock avalanche and resulting debris flow in Estero Parraguirre and Rio Colorado, Región Metropolitana, Chile, in S.G. Evans and J.V. DeGrafff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 135–148.

    Google Scholar 

  135. Havenith, H-B., Strom, A., Jongmans, D., Abdrakhmatov, K., Delvaux, D., and Trefois, P. (2003) Seismic triggering of landslides; Part A: Filed examples from the northern Tien Shan. Nat. Haz. Earth Syst. Sci. 3, 135–149.

    Google Scholar 

  136. Heim, Albert. (1932) Bergsturz und Menschenleben, Fretz and Wasmuth Verlag, Zurich, 218 p.

    Google Scholar 

  137. Heim, Arnold (1948) Wunderland Peru, Verlag Hans Huber, Bern, 196 p.

    Google Scholar 

  138. Hendron, A.J. and Patton, F.D. (1985) The Vaiont Slide: a geotechnical analysis based on new geological observations of the failure surface: U.S. Army Engineer Waterways Experiment Station, Technical Report GL-85–5, 2 volumes.

    Google Scholar 

  139. Henderson, W. (1859) Memorandum on the nature and effects of the flooding of the Indus on 10th August, 1858, as ascertained at Attock and its neighbourhood, Jo. Asiatic Soc. of Bengal 28, 199–219.

    Google Scholar 

  140. Hermanns, R.L. and Strecker, M.R. (1999) Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina, GSA Bulletin 111, 934–948.

    Google Scholar 

  141. Hermanns, R.L., Niedermann, S., Villanueva Garcia, A., Sosa Gomez, J. and Strecker, M.R. (2001) Neotectonics and catstrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina, Geology 29, 619–623.

    Article  Google Scholar 

  142. Hermanns, R.L., Trauth, M.H., Niedermann, S., McWilliams, M. and Strecker, M.R. (2000) Tephrochronologic constraints on temporal distribution of large landslides in northwest Argentina, Jo. of Geol. 108, 35–52.

    Article  Google Scholar 

  143. Hewitt, K. (1968) Records of natural damming and related events in the Upper Indus Basin, Indus: Jo. of Water and Power Dev. Auth., 10, 11–19.

    Google Scholar 

  144. Hewitt, K., (1998) Catastrophic landslides and their effects on the upper Indus streams, Karakoram Himalaya, northern Pakistan, Geomorphology 26, 47–80.

    Article  Google Scholar 

  145. Hewitt, K. (1999) Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, northern Pakistan, Quat. Res. 51, 220–237.

    Article  Google Scholar 

  146. Hewitt, K. (2001) Catastrophic rockslides and the geomorphology of the Hunza and Gilgit River valleys, Karakoram Himalaya, Erdkunde, 55, 72–93.

    Google Scholar 

  147. Hewitt, K, (2002a) Postglacial landform and sediment associations in a landslide-fragmented river stsytem: the transHimalayan Indus streams, Central Asia, In K. Hewitt, M-L. Byrne, M. English, and G. Young (Eds.) Landscapes in Transition, Kluwer Academic Publishers, Dordrecht, p. 63–91.

    Google Scholar 

  148. Hewitt, K. (2002b) Styles of rock avalanche depositional complexes conditioned by very rugged terrain, Karakoram Himalaya, Pakistan. In S.G. Evans and J.V. DeGraff (Editors) Catastrophic Landslides: Effects, Occurrence, and Mechanisms, Geol. Soc. Am., Reviews in Engineering Geology, v. XV, 345–377.

    Google Scholar 

  149. Hoek, E. and Bray, J.W. (1981) Rock Slope Engineering 3rd Ed. Inst. Min. Metall., London.

    Google Scholar 

  150. Holland, T.H. (1894) Report on the Gohna Landslip, Garhwal. Records Geol. Surv. of India 27, 55–65.

    Google Scholar 

  151. Hovius, N., Stark, C.P., and Allen, P.A. (1997) Sediment flux from a mountain belt derived by landslide mapping, Geology 25, 231–234.

    Article  Google Scholar 

  152. Hovius, N., Stark, C.P., Tutton, M.A., and Abbott, L.D., (1998) Landslide-driven drainage network evolution in a pre-steady-state mountain belt: Finisterre Mountains, Papua New Guinea, Geology 26, 1071–1074.

    Article  Google Scholar 

  153. Hsu, K.J. (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls, GSA Bull. 86, 129–140.

    Google Scholar 

  154. Hu, X.Q. and Cruden, D.M. (1993) Buckling deformation in the Highwood Pass, Alberta, Canada, Can. Geotech. Jo. 30, 276–286.

    Google Scholar 

  155. Huder, J. (1976) Creep in Bunder Schist, Laurits Bjerrum Memeorial Volume, Norwegian Geotechnical Institute, Oslo, p. 125–153.

    Google Scholar 

  156. Hung, J-J., Lee, C-T., and Lin, M-L. (2002) Tsao-Ling rockslides, Taiwan, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 91–115.

    Google Scholar 

  157. Hungr, O. (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches, Can. Geotech. Jo. 32, 610–623.

    Google Scholar 

  158. Hungr, O. and Evans, S.G. (1988) Engineering evaluation of fragmental rockfall hazards. Proceedings, V International Symposium on Landslides, v. 1, p. 685–690.

    Google Scholar 

  159. Hungr, O. and Evans, S.G. (1996) Rock avalanche runout prediction using a dynamic model. Procceedings, 7th International Symposium on Landslides, Trondheim, Norway, v. 1, p. 233–238.

    Google Scholar 

  160. Hungr, O. and Evans, S.G. (1997) A dynamic model for landslides with changing mass. Proceedings of International Association of Engineering Geology Symposium on Engineering Geology and the Environment, Athens, Greece, v. 1, p. 719–724.

    Google Scholar 

  161. Hungr, O., Evans, S.G., and Hazzard, J. (1999) Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia, Can. Geotech. Jo. 36, 224–238

    Article  Google Scholar 

  162. Hungr, O., Dawson, R.F., Kent, A., Campbell, D., and Morgenstern, N.R. (2002) Rapid flow slides of coal-mine waste in British Columbia, Canada, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 191–208.

    Google Scholar 

  163. Hungr, O., Evans, S.G., Bovis, M.J., and Hutchinson, J.N. (2001) A review of the classification of landslides of the flow type, Env. Eng. Geosci. 7, 221–238.

    Google Scholar 

  164. Hutchinson, J.N. (1971). Field and laboratory studies of a fall in Upper Chalk cliffs at Joss Bay, Isle of Thanet. In Stress-Strain behaviour of soils, Proceedings, Roscoe Memorial Symposium, Cambridge, pp. 692–706.

    Google Scholar 

  165. Hutchinson, J.N, (1987) Mechanisms producing large displacements in landslides on pre-existing shears, Mem. Geol. Soc. of China 9, 175–200.

    Google Scholar 

  166. Hutchinson, J.N. (1988) General report : morphological and geotechnical parameters of landslides in relation to geology and hydrogeology, Proceedings of the 5 th International Symposium on Landslides, Lausanne, Switzerland, v. 1, 3–35.

    Google Scholar 

  167. Hutchinson, J.N. (1995) Deep-seated mass movements on slopes, Mem. Soc. Geol. It., 50: 147–164

    Google Scholar 

  168. Hutchinson, J.N. (2002) Chalk flows from the coastal cliffs of northwest Europe, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 257–302.

    Google Scholar 

  169. Hutchinson, J.N. and Kojan, E. (1975) The Mayunmarca Landslide of 25th April 1974, Peru, Report Ser. No. 3124/RMO.RD/SCE, UNESCO, Paris.

    Google Scholar 

  170. Imrie, A.S. and Moore, D.P. (1997) BC Hydro’s approach to evaluating reservoir slope stability from a risk perspective, In D.M. Cruden and R. Fell (Editors) Landslide Risk Assessment, A.A. Balkema, Rotterdam, pp. 215–226.

    Google Scholar 

  171. Imrie, A.S., Moore, D.P., and Enegren, E.G. (1992) Performance and maintenance of the drainage system at Downie Slide, Proceedings, 6th International Symposium on Landslides, Christchurch, New Zealand, v. 1, p. 751–757, A.A. Balkema, Rotterdam.

    Google Scholar 

  172. Ishida, T., Chigira, M., and Hibino, S. (1987) Application of the Distinct Element Method for analysis of toppling observed on a fissured rock slope. Rock Mech. and Rock. Eng. 20, 277–283.

    Article  Google Scholar 

  173. Iverson, R.M., Reid, M.E., and LaHusen, R.G. (1997) Debris-flow mobilization from landslides, Ann. Rev. Earth Plan. Sci., 25, 85–138.

    Article  Google Scholar 

  174. Jackson, L.E. (2002) Landslides and landscape evolution in the Rocky Mountains and adjacent Foothills area, southwestern Alberta, Canada, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 325–344.

    Google Scholar 

  175. Janda, R.J., Scott, K.M., Nolan, K.M., and Martinson, H.A. (1981) Lahar movement, effects, and deposits, In Lipman, P.W. and Mullineaux, D.R. (Editors) The 1980 eruptions of Mount St Helens, Washington, United States Geol. Surv., Prof. Paper 1250, p. 461–478.

    Google Scholar 

  176. Jing, L. (2003) A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering, Int. Jo. of Rock Mech. and Mining Sci., 40, 283–353.

    Article  Google Scholar 

  177. Johnson, R.W. (1987) Large-scale volcanic cone collapse: the 1888 slope failure of Ritter volcano, and other examples from Papua New Guinea, Bull. Volcanol., 49, 669–679.

    Article  Google Scholar 

  178. Jones, B.L., Chinn, S.S.W., and Brice, J.C. (1984) Olokele rock avalanche, island of Kauai, Hawaii, Geology 12, 209–211.

    Article  Google Scholar 

  179. Jorstad, F. (1968) Waves generated by landslides in Norwegain fjords and lakes. Norwegian Geotechnical Institiute Publication No. 69, p. 13–32.

    Google Scholar 

  180. Kalkani, E.C. and Piteau, D.R. (1976) Finite element analysis of toppling failure at Hell’s Gate Bluffs, British Columbia, Bull. Assoc. Eng. Geol., 13, 315–327

    Google Scholar 

  181. Keefer, D.K., (1984) Landslides caused by earthquakes, Geol. Soc. Am. Bull. 95, 406–421.

    Article  Google Scholar 

  182. Keefer, D.K., (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active regions, Geomorpholgy 10, 265–284.

    Article  Google Scholar 

  183. Keefer, D.K. (2002) Investigating landslides caused by earthquakes - a historical review, Surv. in Geophysics 23, 473–510.

    Article  Google Scholar 

  184. Kerle, N. and van Wyk de Vries, B., (2001) The 1998 debris avalanche at Casita volcano, Nicaragua - investigation of structural deformation as the cause of slope instability using remote sensing, Jo. Volc. Geotherm. Res. 105, 49–63.

    Article  Google Scholar 

  185. Kiersch, G.A. (1964) Vaiont reservoir disaster, Civil Engineering, ASCE 34: 32–39

    Google Scholar 

  186. Kilburn, C.R.J., and Sorensen, S-A. (1998) Runout lengths of sturzstroms: the control of initial conditions and of fragment dynamics Jo. Geophys. Res. 103B, 17877–17884.

    Article  Google Scholar 

  187. Kimber, O.G., Allison, R.J., and Cox, N.J. (1998) Mechanisms of failure and slope development in rock masses. Trans. Inst. Br. Geogr., NS 23, 353–370.

    Article  Google Scholar 

  188. King, J., Loveday, I., and Schuster, R.L. (1989) The 1985 Bairaman landslide dam and resulting debris flow, Papua New Guinea, Quat. Jo. Eng. Geol. 22, 257–270.

    Google Scholar 

  189. Kjartansson, G. (1967) The Steinsholtshlaup, central-south Iceland on January 15th, 1967, Jokull 17, 249–262.

    Google Scholar 

  190. Kobayashi, Y., Harp, E.L., and Kagawa, T. (1990) Simulation of rockfalls triggered by earthquakes, Rock Mech. and Rock. Eng. 23, 1–20.

    Article  Google Scholar 

  191. Kohlbeck, F., Scheidegger, A.F. and Sturgul, J.R. (1979) Geomechanical model of an alpine valley. Rock Mech., 12, 1–14.

    Article  Google Scholar 

  192. Kolderup, N-H. (1955) Raset I Modalen 14. August 1953, Norsk Geol. Tidssk. 34, 211–217.

    Google Scholar 

  193. Korup, O. (2002) Recent research on landslide dams - a literature review with special attention to New Zealand. Prog. in Phys. Geog., 26, 206–235.

    Article  Google Scholar 

  194. Krahn, J. and Morgenstern, N.R. (1976) Mechanics of the Frank slide. In Rock Engineering for Foundations and Slopes: American Society of Civil Engineers, v. 1, p. 309–331.

    Google Scholar 

  195. Krieger, M.H. (1977) Large landslides, composed of megabreccia, interbedded in Miocene basin deposits, southeastern Arizona, United States Geol. Surv. Prof. Paper 1008, 25 p.

    Google Scholar 

  196. Latter, J.H. (1981) Tsunamis of volcanic origin: summary of causes, with particular reference to Krakatoa, 1883, Bull. Volcanol. 44, 467–499.

    Article  Google Scholar 

  197. Lee, K.L. and Duncan, J.M. (1975) Landslide of April 25, 1974 on the Mantaro River, Peru. National Acad. Sci., Washington, DC, 72 p.

    Google Scholar 

  198. Legros, F. (2002) The mobility of long run-out landslides, Eng. Geol. 63, 301–331.

    Article  Google Scholar 

  199. Lehmann, O. (1926) Die verheerungen in der Sandlinggruppe (Salzkammergut), Akad. Der Wiss. In Wien, Denk. 100, 259–299.

    Google Scholar 

  200. Leoniv, N.N. (1960) The Khait, 1949 earthquake and geological conditions of its ocurrence. Izvestia of the Academy of Sciences of the USSR, Geophysical Series, No 3, 409–424.

    Google Scholar 

  201. Longwell, C.R. (1951) Megabreccia developed downslope from large faults, Am. Jo. Sci., 249, 343–355.

    Article  Google Scholar 

  202. Lopez, D.L. and Williams, S.N. (1993) Catastrophic volcanic collapse: relation to hydrothermal processes, Science 260, 1794–1796.

    Article  Google Scholar 

  203. Li, T. and Wang, S. (1992) Landslide hazards and their mitigation in China, Science Press, Beijing, 84 pp.

    Google Scholar 

  204. Li, T., Schuster, R.L., and Wu, J. (1986) Landslide dams in south-central China, R.L. Schuster (ed.) Landslide Dams:processes, risk, and mitigation, Geotechnical Special Publication No. 3, American Society of Civil Engineers, New York, p. 146–162.

    Google Scholar 

  205. Lliboutry, L., Morales, B., Pautre, A. and Schneider, B. (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. 1. Historical failures of morainic dams, their causes and prevention, Jo. of Glaciol., 18, 239–254.

    Google Scholar 

  206. Mader, C.L. (1999) Modelling the 1958 Lituya Bay mega-tsunami, Science of Tsunami Hazards 17, 57–67.

    Google Scholar 

  207. Major, J.J. and Newhall, C.G. (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods, Bull. Volcanol. 52, 1–27.

    Article  Google Scholar 

  208. Martin, C.D. and Kaiser, P.K. (1984) Analysis of a rock slope with internal dilation. Can Geotech. Jo. 21, 605–620.

    Google Scholar 

  209. Martino, S., Prestininzi, A. and Scarascia-Mugnozza, G. (2001) Mechanisms of deep seated gravitational deformations: parameters from laboratory testing for analogical and numerical modeling, in P. Sarkka P. Eloranta (eds.) Rock mechanics - a challenge for society, Balkema, Rotterdam, p. 137–142.

    Google Scholar 

  210. Mason, K. (1929) Indus Floods and Shyok Glaciers, Himal. Journal 1, 10–29.

    Google Scholar 

  211. Matsukura, Y. (2001) Rockfall at Toyohama Tunnel, Japan, in 1996: effect of notch growth on instability of a coastal cliff, Bull. Eng. Geol. Env. 60, 285–289.

    Article  Google Scholar 

  212. McCalpin, J.P. (1999) Criteria for determining the seismic significance of sackungen and other scarplike landforms in mountainous regions. Appendix A, p. A-122 to A-142 in Techniques for identifying faults and determining their origins. U.S. Nuclear Regulatory Commission NUREG/CR- 5503.

    Google Scholar 

  213. McCalpin, J.P. and Irvine, J.R. (1995) Sackungen at the Aspen Highlands ski area, Pitkin County, Colorado, Env. Eng. Geosci. 1, 277–290.

    Google Scholar 

  214. McConnell, R.G. and Brock, R.W. (1904) Report on the Great Landslide at Frank, Alberta, Annual Report of the Department of Interior for the year 1902–1903, Part VIII, 17 p.

    Google Scholar 

  215. McGuire, W.J. (1996). Volcano instability; a review of contemporary themes. In McGuire, W.J., Jones, A.P. and Neuberg, J. (Editors) 1996. Volcano instability on the earth and other planets. Geological Society of London Special Publication No. 11, p. 1–23.

    Google Scholar 

  216. McSaveney, M.J. (1978) Sherman Glacier rock avalanche, Alaska, U.S.A. in B. Voight (ed.) Rockslides and avalanches, 1. Natural Phenomena, Elsevier, Amsterdam, p.197–258.

    Google Scholar 

  217. McSaveney, M.J. (2002) Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 35–70.

    Google Scholar 

  218. Meidal, K.M. and Moore, D.P. (1996) Long-term performance of instrumentation at Dutchman’s Ridge, Proceedings, 7th. International Symposium on Landslides,Trondheim, Norway, v. 3, p. 1565–1570.

    Google Scholar 

  219. Melekestsev, I.V., and Braitseva, O.A. (1988) Gigantic collapses on volcanoes, Volcanology and Seis-mology 6, 495–508 (in Russian).

    Google Scholar 

  220. Miller, D.J. (1960) Giant waves in Lituya Bay, Alaska, United States Geol. Surv. Prof. Paper 354-C, p. 51–86.

    Google Scholar 

  221. Montadon, F. 1933. Chronologie des grands éboulements alpins du début de l’ère chrétienne à nos jours. Matériaux pour l’étude des calamités, 32, 271–340.

    Google Scholar 

  222. Moore, D.P. (1990) Stabilization of Dutchman’s Ridge, Geotechnical News, 8, 47.

    Google Scholar 

  223. Moore, D.P. and Imrie, A.S. (1995) Stabilization of Dutchman’s Ridge, Proceedings of 6th International Symposium on Landslides, Christchurch, New Zealand, v.3, p. 1783–1788.

    Google Scholar 

  224. Moore, D.P., Ripley, B.D., and Groves, K.L. (1992) Evaluation of mountainslope movements at Wahleach; in Geotechnique and natural hazards Bitech Publishers, Vancouver, B.C. p. 99–107.

    Google Scholar 

  225. Moriwaki, H., Yazaki, S., and Oyagi, N. (1985) A gigantic debris avalanche and its dynamics at Mount Ontake caused by the Nagano-ken-seibu earthquake, 1984. Proc. 4th Int. Conf. Field Workshop on Landslides, Tokyo, p. 359–364.

    Google Scholar 

  226. Morris, T.H. and Hebertson, G.F. (1996) Large-rock avalanche deposits, eastern Basin and Range, Utah: emplacement, diagenesis, and economic potential, AAPG Bulletin 80, 1135–1149.

    Article  Google Scholar 

  227. Mothes, P.A., Hall, M.L., and Janda, R.J. (1998) The enormous Chillos Valley Lahar: an ash-flowgenerated debris flow from Cotopaxi Volcano, Ecudaor, Bull. Volcanol. 59, 233–244.

    Article  Google Scholar 

  228. Muller, L. (1964) The rock slide in the Vaiont valley, Rock Mech. and Eng. Geol., 6, 148–212.

    Google Scholar 

  229. Naranjo, J.A. and Francis, P. (1987) High velocity debris avalanche at Lasstarria volcano in the north Chilean Andes, Bull. Volc. 49, 509–514.

    Article  Google Scholar 

  230. Nichol, S.L., Hungr, O., and Evans, S.G. (2002) Large-scale brittle and ductile toppling of rock slopes, Can. Geotech. Jo. 39, 773–788.

    Article  Google Scholar 

  231. Nicoletti, P.G. and Parise, M. (1996) Geomorphology and kinematics of the Conturrana rockslidedebris flow (NW Sicily), Earth Surf. Proc. and Landforms, 21, 875–892.

    Article  Google Scholar 

  232. Niederer, J., (1941) Der Felssturz am Flimserstein. Jahresbericht der Naturforschenden Gesellschaft Graubünden, Chur

    Google Scholar 

  233. Nikonov, A.A., and Shebalina, T.Y. (1979) Lichenometry and earthquake age determination in central Asia, Nature 280, 675–677.

    Article  Google Scholar 

  234. Norrish, N.I. and Wyllie, D.C. (1996) Rock slope stability analysis. In A.K. Turner and R.L. Schuster (Editors) Landslides:investigation and mitigation, Special Report 247 Tran. Res. Bd., Nat. Res. Council, National Academy Press, Washington, p. 391–425

    Google Scholar 

  235. Noverraz, F. (1996) Sagging or deep-seated creep: fiction or reality? Proc. 7th International Symposium on Landslides, Trondheim, Norway, p, 821–828, A.A. Balkema, Rotterdam

    Google Scholar 

  236. Ogawa, T. and Homma, F. (1926) The geology of the Unzen Volcanoes, Pan-Pac. Sci. Congr. Guidebook for Excursion E-1, 3, 4, 30 p.

    Google Scholar 

  237. Ohmori, H. and Hirano, M. (1988) Magnitude, frequency and geomorphological significance of rocky mud flows, landcreep, and the collapse of steep slope, Zeits für Geomorph, Suppl. -Bnd 67, 55–65.

    Google Scholar 

  238. Orombelli, G. and Porter, S.C. (1988) Boulder deposit of upper Val Ferret (Courmayeur, Aosta valley): deposit of a historic giant rockfall and debris avalanche or a late-glacial moraine? Eclog. Geol. Helv. 81, 365–371.

    Google Scholar 

  239. Osipov, V.I., Mamaev, Yu.A. (1998) Peculiarities of formation and structure of large-scale blockages in mountain valleys. Geoecology, Engineering Geology, Hydrogeology, Geocryology, 6, 94–99 (in Russian).

    Google Scholar 

  240. Ota, K. (1969) Study on the collapses in the Mayu-yama, Sci. Rpt. Shimabara Volc. Obs., Fac. Sci., Kyushu University, 5: 6–35 (in Japanese)

    Google Scholar 

  241. Owen, L. (1989) Neotectonics and glacial deformation in the Karakoram Mountains and Nanga Parbat Himalaya, Tectonophysics, 163, 227–265.

    Article  Google Scholar 

  242. Owen, L. A. (1996) Quaternary lacustrine deposits in a high-energy semi-arid mountain environment, Karakoram Mountains, northern Pakistan, Jo. Quat. Sci. 11, 461–483.

    Article  Google Scholar 

  243. Paul, S.K., Bartarya, S.K., Rautela, P., and Mahajan, A.K. (2000) Catastrophic masss movement of 1998 monsoons at Malpa in Kali Valley, Kumaun Himalaya (India), Geomorphology 35, 169–180.

    Article  Google Scholar 

  244. Pedersen, S.A.S., Larsen, L.M., Dahl-Jensen, T., Jepsen, H.F., Pedersen, G.K., Nielsen, T., Pedersen, A.K., von Platen-Hallermud, F., and Weng, W. (2002) Tsunami-generating rock fall and landslide on the south coast of Nuussuaq, central West Greenland, Geology of Greenland Survey Bulletin, 191, 73–83.

    Google Scholar 

  245. Pelletier, J.D., Malamud, B.D., Blodgett, T., & Turcotte, D.L. (1997) Scale-invariance od soil moisture variability and its implications for the frequency-size distribution of landslides, Eng. Geol. 48, 255–268.

    Article  Google Scholar 

  246. Pfeiffer, T.J. and Bowen, T.D. (1989) Computer simulation of rockfalls, Bull. Assoc. Eng. Geol. 26, 135–146.

    Google Scholar 

  247. Philip, H. and Ritz, J-F. (1999) Gigantic paleolandslide associated with active faulting along the Bogd fault (Gobi-Altay, Mongolia), Geology 27, 211–214.

    Article  Google Scholar 

  248. Plafker, G. (1968) Source areas of the Shattered Peak and Pyramid Peak Landslides at Sherman Glacier. In The Great Alaska Earthquake of 1964. v. 3, p. 374–382. National Academy of Sciences, Washington, D.C.

    Google Scholar 

  249. Plafker, G. and Eriksen, G.E. (1978) Nevados Huascarán avalanches, Peru. In B. Voight (Ed.) Rockslides and Avalanches v. 1, Elsevier, Amsterdam, p. 277–314.

    Google Scholar 

  250. Plafker, G. and Eyzaguirre, V.R. (1979) Rock avalanche and wave at Chungar, Peru. In B. Voight (Ed.) Rockslides and Avalanches, v. 2. Engineering Sites, Elsevier, Amsterdam, p. 269–279

    Google Scholar 

  251. Poisel, R. (1998) Kippen, Sacken, Gleiten, Felsbau, 16, 135–140.

    Google Scholar 

  252. Porter, S.C. and Orombelli, G. (1980) Catastrophic rockfall of September 12, 1717 on the Italian flank of the Mont Blanc Massif, Zeits. fur Geomorph. 24, 200–218.

    Google Scholar 

  253. Porter, S.C. and Orombelli, G. (1981) Alpine rockfall hazards, American Scientist, 69, 67–75.

    Google Scholar 

  254. Poschinger, A. von. (2002) Large rockslides in the Alps: A commentary on the contribution of G. Abele (1937–1994) and a review of some recent developments, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 237–255.

    Google Scholar 

  255. Post, A. (1967) Effects of the March 1964 Alaska Earthquake on Glaciers, United States Geol. Surv. Prof. Paper 544-D, 42 p.

    Google Scholar 

  256. Preobrajensky, J. (1920) The Usoi Landslide, Geol. Comm., Papers on Applied Geol., 14, 21 p. (In Russian)

    Google Scholar 

  257. Pritchard, M.A. and Savigny, K.W. (1990) Numerical modeling of toppling, Can. Geotech. Jo., 27, 823–834.

    Google Scholar 

  258. Pritchard, M.A and Savigny, K.W. (1991) The Heather Hill landslide: an example of a large scale toppling failure in a natural slope, Can. Geotech. Jo. 28, 410–422

    Article  Google Scholar 

  259. Read, S.A.L., Beetham, R.D., and Riley, P.B. (1992) Lake Waikaremoana barrier - a large landslide dam in New Zealand, Proc. 6th Intern. Symposium on Landslides, Christchurch, New Zealand, v. 2, pp. 1481–1487, Balkema, Rotterdam.

    Google Scholar 

  260. Reid, M.E., Christian, S.B., and Brien, D.L. (2000) Gravitational stability of three-dimensional stratovolcano edifices, J. Geophys. Res. 105, 6043–6056.

    Article  Google Scholar 

  261. Reid, M.E., Sisson, T.W., and Brien, D.L. (2001) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington, Geology 29, 779–782.

    Article  Google Scholar 

  262. Reneau, S.L., and Dethier, D.P., (1996) Late-Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico, GSA Bull. 108, 1492–1507.

    Google Scholar 

  263. Riemer, W., Locher, T., and Nunez, I. (1988) Mechanics of deep seated mass movements in metamorphic rocks in the Ecuadorian Andes, Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, v. 1, 307–310.

    Google Scholar 

  264. Rodriguez, C.E., Bommer, J.J., and Chandler, R.J. (1999) Earthquake-induced landslides: 1980–1997, Soil Dyn. and Earthquake Eng. 18, 325–346.

    Article  Google Scholar 

  265. Sartori, M., Baillifard, Jaboyedoff, M., and Rouiller, J-D. (2003) Kinematics of the 1991 Randa rockslides (Valais, Switzerland) Nat. Haz. and Earth Syst. Sci., 3, 423–433

    Google Scholar 

  266. Sassa, K. (1988) Geotechnical model for the motion of landslides (Special lecture). Proceedings, 5th International Symposium on Landslides, Lausanne, Switzerland, v. 1, p. 37–56.

    Google Scholar 

  267. Sassa, K. (Editor) (1999) Landslides of the world. Kyoto University Press, 413 pp.

    Google Scholar 

  268. Savage, S.B. and Hutter, K. (1991) The dynamics of avalanches of granular materials from initiation to runout. Part 1. Analysis, Acta Mech. 86, 201–223.

    Article  Google Scholar 

  269. Scarpa, R. and Tilling, R.I. (Editors) (1996) Monitoring and Mitigation of Volcano Hazards, Springer-Verlag, Berlin. 841 pp.

    Google Scholar 

  270. Scheidegger, A.E., (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics, 5, 231–236.

    Article  Google Scholar 

  271. Scheko, A.I. and Lekhatinov, A.M. (1970) Current state of the Usoi Blockage and tasks of future studies. In Materials of Scientific-technical meeting on the problems of study and forecast of the mudflows, rockfalls and landslides, Dushanbe, 219–223 (in Russian)

    Google Scholar 

  272. Schuster, R.L. (2002) Usoi landslide dam, southeastern Tajikistan, Proc. Int. Symp. on Landslide Risk Mitigation and Protection of Cultural and Natural Heritage, Kyoto, p. 489–505

    Google Scholar 

  273. Schuster, R.L., Logan, R.L., and Pringle, P.T., (1992) Prehistoric rock avalanches in the Olympic Mountains, Washington, Science 258, 1620–1621.

    Article  Google Scholar 

  274. Scott, K.M. (1988) Origins, behaviour and sedimentology of lahars and lahar-runout flows in the Tooutle-Cowlitz river system, United States Geol. Surv. Prof. Paper 1447-A, 74 p.

    Google Scholar 

  275. Scott, K.M. (2000) Precipitation-triggered debris flow at Casita Volcano, Nicaragua: implications for mitigation strategies in volcanic and tectonically active steeplands, in G.F. Wieczorek and N.D. Naeser (eds.) Debris-flow hazards mitigation: mechanics, prediction and assessment, A.A. Balkema, Rotterdam, p. 3–13

    Google Scholar 

  276. Scott, K.M., Macías, J.L., Naranjo, J.A., Rodriguez, S., and McGeehin, J.P. (2001) Catastrophic debris flows transformed by landslides in volcanic terrains: mobility, hazard assessment, and mitigation strategies. United States Geol. Surv. Prof. Paper 1630, 67 p.

    Google Scholar 

  277. Selli, R. and Trevisan, L. (1964) Caratteri e interpretazione della frana del Vaiont, Giornale di Geologia 32, 7–104.

    Google Scholar 

  278. Semenza, E. and Ghirotti, M. (1998) Vaiont-Longarone 34 Anni Dopo La Catastrophe. Annali dell’Univsita di Ferrara (Nuovo Serie) Scienze della Terra 7, 63–94.

    Google Scholar 

  279. Semenza, E. and Ghirotti, M. (2000) History of the 1963 Vaiont slide: the importance of geological factors, Bull. Eng. Geol. Env. 59, 87–97.

    Article  Google Scholar 

  280. Sevilla, J.H. (1994) The Josefina landslide and its implications in the electrical service for the Republic of Ecuador; Proceedings, 7th International Congress, International Association of Engineering Geology, Lisbon, v. 3, p. 1801–1810.

    Google Scholar 

  281. Shang,Y., Yang, Z., Li, L., Liu, D., Liao, Q. and Wang, Y. (2003) A super-large landslide in Tibet in 2000 : background, occurrence, disaster, and origin, Geomorphology 54, 225–243.

    Article  Google Scholar 

  282. Sharpe, C.F.S. (1938) Landslides and related phenomena, Columbia University Press, New York, 137 pp.

    Google Scholar 

  283. Sheridan, M.F., Bonnard, C., Carreno, R., Siebe, C., Strauch, W., Navarro, M., Calero, J.C., and Trujillo, N.B. 1999. Report on the 30 October 1998 Rock Fall/ Avalanche and breakout flow of Casita Volcano, Nicaragua, triggered by Hurricane Mitch, Landslide News, v. 12, p. 2–4.

    Google Scholar 

  284. Shpilko, G.A. (1915) New data on the Usoi blockage and the Sarez Lake, Proc. of the Turkestan Department of Russian Geographical Society, 11, 11–17 (in Russian).

    Google Scholar 

  285. Siebert, L. (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions, Jo. Volc. Geotherm. Res. 22, 163–197.

    Article  Google Scholar 

  286. Siebert, L. (1996) Hazards of large volcanic debris avalanches and associated eruptive phenomena, in R. Scarpa and R.I. Tilling (eds.) Monitoring and mitigation of volcano hazards, Springer-Verlag, Berlin, p. 541–57.

    Google Scholar 

  287. Siebert, L. (2002) Landslides resulting from structural failure of volcanoes, in S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 209–235.

    Google Scholar 

  288. Siebert, L., Beget, J.E., and Glicken, H. (1995) The 1883 and late-prehistoric eruptions of Augustine volcano, Alaska, Jo. of Volc. and Geotherm. Res. 66, 367–395.

    Article  Google Scholar 

  289. Siebert, L., Glicken, H., and Ui, T. (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions, Bull. Volcanol. 49, 435–459.

    Article  Google Scholar 

  290. Singh, N.K. & Vick, S.G. (2003) Probabilistic rockfall hazard assessment for roadways in mountainous terrain. Proceedings, 3rd Canadian Conference on Geotechnique and Natural Hazards, Canadian Geotechnical Society, Edmonton, p. 253–260.

    Google Scholar 

  291. Slingerland, R.L. and Voight, B. (1979) Occurrences, properties and predictive models of landslidegenerated impulse waves. In B. Voight (Ed.) Rockslides and avalanches v. 2, p. 317–397, Elsevier, Amsterdam.

    Google Scholar 

  292. Solonenko, V.P. (1970) Scars on the Earths’ face, Priroda (Nature), 9, 17–25 (in Russian).

    Google Scholar 

  293. Solonenko, V.P. (1972) Seismogenic destruction of mountain slopes, Proc. Int. Geol. Congr., Section 13, Montreal, p. 284–290.

    Google Scholar 

  294. Solonenko, V.P. (1977) Landslides and collapses in seismic zones and their prediction, Bull. Int. Assoc. Eng. Geol., 15, 4–8.

    Article  Google Scholar 

  295. Sousa, J, and Voight, B. (1991) Continuum simulation of flow failures, Geotechnique, 41, 515–538.

    Google Scholar 

  296. Stead, D. and Eberhardt, E. (1997) Developments in the analysis of footwall slopes in surface coal mining, Eng. Geol. 46, 41–61.

    Article  Google Scholar 

  297. Steidl, A. and Riedmuller, G. (2003) Deep-seated gravitational slope deformation - a case study. Felsbau 21: 55–61.

    Google Scholar 

  298. Stoopes, G.R. and Sheridan, M.F. (1992) Giant debris avalanches from the Colima Volcanic Complex, Mexico: implications for long-runout landslides (>100 km) and hazard assessment, Geology 20, 299–302.

    Article  Google Scholar 

  299. Strecker, M.R., and Marrett, R. (1999) Kinematic evolution of fault ramps and its role in development of landslides and lakes in the northwestern Argentine Andes, Geology 27, 307–310.

    Article  Google Scholar 

  300. Strom, A.L. (1994a) Mechanism of stratification and abnormal crushing of rockslide deposits. Proceedings, 7th International Association of Engineering Geology Congress, Lisbon, Portugal, v. 3, p. 1287–1295.

    Google Scholar 

  301. Strom, A.L. (1994b) Formation of structure of large rockslide deposits, Geoecology, Engineering Geology, Hydrogeology, Geocryology., No 5, 64–77 (in Russian).

    Google Scholar 

  302. Strom, A.L. (1996) Some morphological types of long-runout rockslides: effect of the relief on their mechanism and on the rockslide deposits distribution. In K. Senneset (ed.) Landslides, Proceedings, 7th International Symposium on Landslides, Trondheim, Norway, p. 1977–1982.

    Google Scholar 

  303. Strom, A.L. (1998) Giant ancient rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan, Landslide News, 11, 20–23.

    Google Scholar 

  304. Sugai, T., Ohmori, H., & Hirano, M. (1994) Rock control on magnitude-frequency distribution of landslides. Transactions Japanese Geomorphological Union 15, 233–251.

    Google Scholar 

  305. Suklje, L. and Vidmar, S. (1961) A landslide due to long term creep. Proc. 5th Int. Conf. Soil Mech. and Found. Eng., v. 2, 727–735.

    Google Scholar 

  306. Suwa, H. (1991) Visually observed failure of a rock slope in Japan, Landslide News, 5, 8–10.

    Google Scholar 

  307. Tabor, R.W. (1971) Origin of ridge top depressions by large-scale creep in the Olympic Mountains, Washington. GSA Bulletin 82, 1811–1822.

    Google Scholar 

  308. Terzaghi, K. (1960) Storage dam founded on landslide debris, Journal of the Boston Society of Civil Engineers, 47, 64–94.

    Google Scholar 

  309. Thorsen, G.W. (1989) Splitting and sagging of mountains, Washington Geology, 17, 3–13.

    Google Scholar 

  310. Thompson, S.C., Clague, J.J., and Evans, S.G. (1997) Holocene activity of the Mt. Currie scarp, Coast Mountains, British Columbia, and implications for its origin. Environmental and Engineering Geoscience, 3, 329–348.

    Google Scholar 

  311. Tika, T.E. and Hutchinson, J.N. (1999) Ring shear tests on soil from the Vaiont landslide slip surface, Geotechnique 49, 59–74.

    Article  Google Scholar 

  312. Tommasi, P. and Galadini, F. (1996) Rock slides and buckling phenomena on a homoclinal mountain slope in south-eastern Alps (Italy) Proc. 7th Int. Symp. on Landslides, Trondheim, v. 2, 1391–1396, Balkema, Rotterdam.

    Google Scholar 

  313. Trauth, M.H., Alonso, R.A., Haselton, K.R., Hermanns, R.L. and Strecker, M.R. (2000) Climate change and mass movements in the Argentine Andes, Earth Planet. Sci. Lett. 179, 243–256.

    Article  Google Scholar 

  314. Trauth, M.H., Bookhagen, B., Marwan, N., and Strecker, M. (2003) Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes, Palaeogeog., Palaeoclim., Palaeoec., 194, 109–121.

    Article  Google Scholar 

  315. Trunk, F.J., Dent, J.D., and Lang, T.E. (1986) Computer modeling of large rock slides, Jo. Geotech. Eng., 112, 348–360

    Article  Google Scholar 

  316. Tsuji, Y. and Hino, T. (1993) Damage and inundation height of the 1792 Shimabara landslide tsunami along the coast of Kumamoto Prefecture, Bulletin of the Earthquake Research Institute, University of Tokyo, 68, 91–176.

    Google Scholar 

  317. Ui, T., Yamamoto, H., and Suzuki-Kamata, K. (1986) Characterisation of debris avalanche deposits in Japan, Jo. Volcanol and Geothermal. Res. 29, 231–243.

    Article  Google Scholar 

  318. Ulrhammer, R.A. (1996). Yosemite rock fall of July 10, 1996, Seism. Res. Lett. 67, 47–48.

    Google Scholar 

  319. Vallance, J.W. and Scott, K.M. (1997) The Osceola mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow, GSA Bulletin, 109, 143–163.

    Google Scholar 

  320. Vallance, J.W., Siebert, L., Rose Jr., W.I., Girón, J.R., and Banks, N.G., (1995) Edifice collapse and related hazards in Guatemala, Jo. of Volc. and Geoth. Res. 66, 337–355.

    Article  Google Scholar 

  321. van Bemmelen, R.W. (1970) The geology of Indonesia. General geology of Indonesia and adjacent archipelago, 2nd. Edition, vol. 1A, Matinhus Nijhiff, The Hague.

    Google Scholar 

  322. van Wyk de Vries, B., and Francis, P.W. (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading, Nature 387, 387–390.

    Article  Google Scholar 

  323. van Wyk de Vries, B., Self, S., Francis, P.W., and Keszthelyi, L. (2001) A gravitational spreading origin for the Socompa debris avalanche, Jo. Volc. Geotherm. Res. 105, 225–247.

    Article  Google Scholar 

  324. Varnes, D.J., Radbruch-Hall, D.H., and Savage, W.Z. (1989) Topographic and structural conditions in areas of gravitational spreading of ridges in the western United States, United States Geol. Surv. Prof. Paper 1496, 28 p.

    Google Scholar 

  325. Voight, B. (Editor) (1978) Rockslides and Avalanches 1: natural phenomena. Elsevier, Amsterdam, 833 pp.

    Google Scholar 

  326. Voight, B. (Editor) (1979) Rockslides and Avalanches 2: engineering sites. Elsevier, Amsterdam, 850 pp.

    Google Scholar 

  327. Voight, B. (2002) Structural stability of andesite volcanoes and lava domes, Phil. Trans. R. Soc. Lond. Ser. A 258, 1663–1703.

    Google Scholar 

  328. Voight, B. and Elsworth, D. (1997) Failure of volcano slopes, Géotechnique 47, 1–31.

    Google Scholar 

  329. Voight, B. and Sousa, J. (1994) Lesson from Ontake-san: a comparitive analysis of debris avalanche dynamics. Eng. Geol. 38, 261–297.

    Article  Google Scholar 

  330. Voight, B., Janda, R.J., Glicken, H., and Douglass, P.M. (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May, 1980, Géotechnique 33, 243–273.

    Google Scholar 

  331. Wadge, G., Francis, P.W., and Ramirez, C.F. (1995) The Socompa collapse and avalanche event, Jo. Volc. Geoth. Res. 66, 309–336.

    Article  Google Scholar 

  332. Waltham, T. (1996) Very large landslides in the Himalayas, Geology Today 12, 181–185.

    Article  Google Scholar 

  333. Wang, W-N., Chigira, M., and Furuya, T. (2003). Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-Chi earthquake in central Taiwan, Eng. Geol. 69, 1–13

    Article  Google Scholar 

  334. Ward, S.N. and Day, S. (2003) Ritter Island Volcano-lateral collapse and the tsunami of 1888, Geophys. J. Int. 154, 891–902.

    Article  Google Scholar 

  335. Watson. R.A. and Wright, H.E. (1969) The Saidmarreh Landslide, Iran, In S.A. Schumm and W.C. Bradley (eds.) United States Contributions to Quaternary Research, Geol. Soc. Am. Special Paper 123, p. 115–139.

    Google Scholar 

  336. Watters, R.J. (1983) A landslide induced waterflood-debris flow, Bull. Int. Ass. Eng. Geol. 28, 177–182.

    Article  Google Scholar 

  337. Wayne, W.J. (1999) The Allemania rockfall dam: a record of a mid-holocene earthquake and catastrophic flood in northwestern Argentina, Geomorphology, 27, 295–306.

    Article  Google Scholar 

  338. Waythomas, C.F. and Wallace, K.L. (2002) Flank collapse at Mount Wrangell, Alaska, recorded by volcanic mass-flow deposits in the Copper River lowland, Can. Jo. Earth Sci., 39, 1257–1279.

    Article  Google Scholar 

  339. Waythomas, C.F., Miller, T.P., and Beget, J.E. (2000) Record of Late Holocene debris avalanches and lahars at Iliamna Volcano, Alaska, Jo. Volc. Geoth. Res. 104, 97–130.

    Article  Google Scholar 

  340. Weidinger, J. T. (1998) Case history and hazard analysis of two lake-damming landslides in the Himalayas, Jo. of Asian Earth Sci. 16, 323–331.

    Article  Google Scholar 

  341. Weidinger, J.T., Wang, J. and Ma, N. (2002) The earthquake-triggered rock avalanche of Cui Hua, Qin Ling Mountains, P.R. of China - the benefits of a lake damming prehistoric natural disaster. Quat. Internat. 93–94, 207–214.

    Article  Google Scholar 

  342. Whitehouse, I.E. (1983) Distribution of large rock avalanche deposits in the central Southern Alps, New Zealand, New Zealand Jo. Geol. Geophys., 26, 271–279.

    Google Scholar 

  343. Whitehouse, I.E. and Griffiths, G.A. (1983) Frequency and hazard of large rock avalanches in the central Southern Alps, New Zealand, Geology 11, 331–334.

    Article  Google Scholar 

  344. Wieczorek, G.F. (2002) Catastrophic rockfalls and rockslides in the Sierra Nevada, USA, In S.G. Evans and J.V. DeGraff (eds.), Catastrophic landslides: effects, occurrence, and mechanisms, Geol. Soc. Am. Rev. Eng. Geol., v. XV, pp. 165–190.

    Google Scholar 

  345. Wieczorek, G.F., Jakob, M., Motyka, R.J., Zirnheld, S.L., and Craw, P. (2003) Preliminary landslide-induced wave hazard assessment: Tidal Inlet, Glacier Bay National Park, Alaska, United States Geol. Surv. Open-File Report 03–100

    Google Scholar 

  346. Wieczorek, G.F., Snyder, J.B., Waitt, R.B., Morrisey, M.M., Uhrhammer, R.A., Harp, E.L., Norris, R.D., Bursik, M.I., and Finewood, L.G. (2000) Unusual July 10, 1996, rock fall at Happy Isles, Yosemite National Park, California, GSA Bulletin 112, 75–85.

    Google Scholar 

  347. Wiles, G.C. and Calkin, P.E. (1992) Reconstruction of a debris-slide-initiated flood in the southern Kenai Mountains, Alaska, Geomorphology. 5, 535–546.

    Article  Google Scholar 

  348. Wise, D.U. (1963) Keystone faulting and gravity sliding driven by basement uplift of Owl Creek Mountains, Wyoming. Bull. Am. Assoc. of Petrol. Geol. 47, 586–598.

    Google Scholar 

  349. Yarnold, J.C. and Lombard, J.P. (1989) A facies model for large rock-avalanche deposits formed in dry climates, In Colburn, I.P., Abbott, P.L., and Minch, J. (eds.) Conglomerates in Basin Analysis: A Symposium Dedicated to A.G. Woodford. Pacific Section S.E.P.M. v. 62, p. 9–31.

    Google Scholar 

  350. Zhou, C.H., Yue, Z.Q., Lee, C.F., Zhu, B.Q., and Wang, Z.H. (2001) Satellite image analysis of a huge landslide at Yi Gong, Tibet, China, Quat. Jo. Eng. Geol. 34, 325–332.

    Google Scholar 

  351. Zolotarev, G.S., Fedorenko, V.S., and Vinnichenko, S.M. (1986) Ancient seismogenic and recent slides and slumps in Tajikistan (Central Asia), Geol. Applic. e Idrogeol., 21, 149–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

EVANS, S., MUGNOZZA, G.S., STROM, A., HERMANNS, R., ISCHUK, A., VINNICHENKO, S. (2006). LANDSLIDES FROM MASSIVE ROCK SLOPE FAILURE AND ASSOCIATED PHENOMENA. In: Evans, S.G., Mugnozza, G.S., Strom, A., Hermanns, R.L. (eds) Landslides from Massive Rock Slope Failure. NATO Science Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4037-5_1

Download citation

Publish with us

Policies and ethics