Advertisement

Untying the Knot: how Einstein Found his way Back to Field Equations Discarded in the Zurich Notebook

  • Michel Janssen
  • Jürgen Renn
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 250)

Sometimes the most obvious questions are the most fruitful ones. The Zurich Notebook is a case in point. The notebook shows that Einstein already considered the field equations of general relativity about three years before he published them in November 1915. In the spring of 1913 he settled on different equations, known as the “Entwurf” field equations after the title of the paper in which they were first published (Einstein and Grossmann 1913). By Einstein's own lights, this move compromised one of the fundamental principles of his theory, the extension of the principle of relativity from uniform to arbitrary motion. Einstein had sought to implement this principle by constructing field equations out of generally-covariant expressions.1 The Entwurf field equations are not generally covariant. When Einstein published the equations, only their covariance under general linear transformations was assured. This raises two obvious questions. Why did Einstein reject equations of much broader covariance in 1912–1913? And why did he return to them in November 1915?

A new answer to the first question has emerged from the analysis of the Zurich Notebook presented in this volume. This calls for a reassessment of Einstein's subsequent elaboration of the Entwurf theory and of the transition to the theory of November 1915. On the basis of a reexamination of Einstein's papers and correspondence of this period, we propose a new answer to the second question.

Keywords

Ricci Tensor Riemann Tensor Christoffel Symbol Mathematical Strategy Trace Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, James L., and David Finkelstein. 1971. “Cosmological Constant and Fundamental Length.” American Journal of Physics 39: 901–904.CrossRefGoogle Scholar
  2. Brading, Katherine A. 2002. “Which Symmetry? Noether, Weyl, and the Conservation of Electric Charge.” Studies in History and Philosophy of Modern Physics 33: 3–22.CrossRefGoogle Scholar
  3. Cattani, Carlo, and Michelangelo De Maria. 1989. “The 1915 Epistolary Controversy Between Einstein and Tullio Levi-Civita.” In (Howard and Stachel 1989, 175–200).Google Scholar
  4. ——. 1993. “Conservation Laws and Gravitational Waves in General Relativity (1915–1918).” In (Earman et al., 1993, 63–87).Google Scholar
  5. Corry, Leo, Jürgen Renn, and John Stachel. 1997. “Belated Decision in the Hilbert-Einstein Priority Dispute.” Science 278: 1270–1273.CrossRefGoogle Scholar
  6. CPAE 4: Martin J. Klein, A. J. Kox, Jürgen Renn, and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 4. The Swiss Years: Writings, 1912–1914. Princeton: Princeton University Press, 1995.Google Scholar
  7. CPAE 5: Martin J. Klein, A. J. Kox, and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 5. The Swiss Years: Correspondence, 1902–1914. Princeton: Princeton University Press, 1993.Google Scholar
  8. CPAE 6: A. J. Kox, Martin J. Klein, and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 6. The Berlin Years: Writings, 1914–1917. Princeton: Princeton University Press, 1996.Google Scholar
  9. CPAE 7: Michel Janssen, Robert Schulmann, József Illy, Christoph Lehner, and Diana Kormos Barkan (eds.), The Collected Papers of Albert Einstein. Vol. 7. The Berlin Years: Writings, 1918–1921. Princeton: Princeton University Press, 2002.Google Scholar
  10. CPAE 8: Robert Schulmann, A. J. Kox, Michel Janssen, and József Illy (eds.), The Collected Papers of Albert Einstein. Vol. 8. The Berlin Years: Correspondence, 1914–1918. Princeton: Princeton University Press, 1998.Google Scholar
  11. De Donder, Théophile. 1917. “Sur les équations différentielles du champ gravifique.” Koninklijke Akademie van Wetenschappen te Amsterdam. Wis- en Natuurkundige Afdeeling. Verslagen van de Gewone Vergaderingen 26 (1917–18): 101–104. Reprinted in Koninklijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings 20 (1917–18): 97–100.Google Scholar
  12. Earman, John. 2003. “The Cosmological Constant, the Fate of the Universe, Unimodular Gravity, and all that.” Studies in History and Philosophy of Modern Physics 34: 559–577.CrossRefGoogle Scholar
  13. Earman, John, and Michel Janssen. 1993. “Einstein's Explanation of the Motion of Mercury's Perihelion.” In (Earman et al., 1993, 129–172).Google Scholar
  14. Earman, John, Michel Janssen, and John D. Norton (eds.). 1993. The Attraction of Gravitation: New Studies in the History of General Relativity (Einstein Studies, Vol. 5). Boston: Birkhäuser.Google Scholar
  15. Einstein, Albert. 1912. “Zur Theorie des statischen Gravitationsfeldes.” Annalen der Physik 38: 443–458, (CPAE 4, Doc. 4).CrossRefGoogle Scholar
  16. ——. 1913. “Zum gegenwärtigen Stande des Gravitationsproblems.” Physikalische Zeitschrift 14: 1249–1262, (CPAE 4, Doc. 17). (English translation in vol. 3 of this series.)Google Scholar
  17. ——. 1914a. “Physikalische Grundlagen einer Gravitationstheorie.” Naturforschende Gesellschaft in Zürich. Vierteljahrsschrift 58: 284–290, (CPAE 4, Doc. 16).Google Scholar
  18. ——. 1914b. “Prinzipielles zur verallgemeinerten Relativitätstheorie und Gravitationstheorie.” Physikalische Zeitschrift 15: 176–180, (CPAE 4, Doc. 25).Google Scholar
  19. ——. 1914c. “Die formale Grundlage der allgemeinen Relativitätstheorie.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 1030–1085, (CPAE 6, Doc. 9).Google Scholar
  20. ——. 1915a. “Zur allgemeinen Relativitätstheorie.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 778–786, (CPAE 6, Doc. 21).Google Scholar
  21. ——. 1915b. “Zur allgemeinen Relativitätstheorie. (Nachtrag).” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 799–801, (CPAE 6, Doc. 22).Google Scholar
  22. ——. 1915c. “Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 831–839, (CPAE 6, Doc. 24).Google Scholar
  23. ——. 1915d. “Die Feldgleichungen der Gravitation.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 844–847, (CPAE 6, Doc. 25).Google Scholar
  24. ——. 1916a. “Die Grundlage der allgemeinen Relativitätstheorie.” Annalen der Physik 49: 769–822, (CPAE 6, Doc. 30).CrossRefGoogle Scholar
  25. ——. 1916b. “Näherungsweise Integration der Feldgleichungen der Gravitation.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 688–696, (CPAE 6, Doc. 32).Google Scholar
  26. ——. 1916c. “Hamiltonsches Prinzip und allgemeine Relativitätstheorie.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 1111–1116, (CPAE 6, Doc. 41).Google Scholar
  27. ——. 1917. “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 142–152, (CPAE 6, Doc. 43).Google Scholar
  28. ——. 1918a. “Über Gravitationswellen.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 154–167, (CPAE 7, Doc. 1).Google Scholar
  29. ——. 1918b. “Notiz zu E. Schrödingers Arbeit ‘Die Energiekomponenten des Gravitationsfeldes.’” Physikalische Zeitschrift 19: 115–116, (CPAE 7, Doc. 2).Google Scholar
  30. ——. 1918c. “Prinzipielles zur allgemeinen Relativitätstheorie.” Annalen der Physik 55: 241–244, (CPAE 7, Doc. 4).CrossRefGoogle Scholar
  31. ——. 1918d. “Der Energiesatz der allgemeinen Relativitätstheorie.” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 448–459, (CPAE 7, Doc. 9).Google Scholar
  32. ——. 1919. “Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle?” Königlich Preuβische Akademie der Wissenschaften (Berlin). Sitzungsberichte: 349–356, (CPAE 7, Doc. 17).Google Scholar
  33. ——. 1933a. On the Method of Theoretical Physics. (The Herbert Spencer lecture. Oxford, June 10, 1933.) Oxford: Clarendon Press. Reprinted in more colloquial translation in (Einstein 1954, 270–276). Page reference to this reprint. A German manuscript is available (EA 1 114) under the title: “Zur Methode der theoretischen Physik.”Google Scholar
  34. ——. 1933b. Origins of the General Theory of Relativity. (George A. Gibson foundation lecture at the University of Glasgow, June 20, 1933.) Glasgow: Jackson. Reprinted in slightly different version (under the title “Notes on the Origin of the General Theory of Relativity”) in (Einstein 1954, 285–290). Page reference to this reprint. A German manuscript is available (EA 78 668) under the title: “Einiges über die Entstehung der allgemeinen Relativitätstheorie.”Google Scholar
  35. ——. 1949. “Autobiographical Notes.” In P. A. Schilpp (ed.), Albert Einstein: Philosopher-Scientist. Evanston, Ill.: Library of Living Philosophers, 1–95.Google Scholar
  36. ——. 1954. Ideas and Opinions. New York: Bonanza.Google Scholar
  37. Einstein, Albert, and Adriaan D. Fokker. 1914. “Die Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentialkalküls.” Annalen der Physik 44 (1914): 321–328, (CPAE 4, Doc. 28).CrossRefGoogle Scholar
  38. Einstein, Albert, and Marcel Grossmann. 1913. Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Leipzig: Teubner, (CPAE 4, Doc. 13).Google Scholar
  39. ——. 1914a. “Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation.” Zeitschrift für Mathematik und Physik 62: 225–259. Reprint of Einstein and Grossmann 1913 with additional “Comments” (“Bemerkungen,” CPAE 4, Doc. 26).Google Scholar
  40. ——. 1914b. “Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte Relativitätstheorie gegründeten Gravitationstheorie.” Zeitschrift für Mathematik und Physik 63: 215–225, (CPAE 6, Doc. 2).Google Scholar
  41. Eisenstaedt, Jean, and A. J. Kox (eds.). 1992. Studies in the History of General Relativity (Einstein Studies, Vol. 3). Boston: Birkhäuser.Google Scholar
  42. Finkelstein, David R., Andrei Galiautdinov, and James E. Baugh. 2001. “Unimodular Relativity and Cosmological Constant.” Journal of Mathematical Physics 42: 340–346.CrossRefGoogle Scholar
  43. Gray, Jeremy (ed.). 1999. The Symbolic Universe: Geometry and Physics, 1890–1930. Oxford: Oxford University Press.Google Scholar
  44. Hilbert, David. 1915. “Die Grundlagen der Physik. (Erste Mitteilung).” Königliche Gesellschaft der Wis-senschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten: 395–407.Google Scholar
  45. Holton, Gerald. 1968. “Mach, Einstein, and the Search for Reality.” Daedalus 97: 636–673. Reprinted in Gerald Holton, Thematic Origins of Scientific Thought: Kepler to Einstein. Rev. Ed. Cambridge: Harvard University Press, 1988, 237–277. Page references are to this reprint.Google Scholar
  46. Howard, Don, and John Stachel (eds.). 1989. Einstein and the History of General Relativity (Einstein Studies, Vol. 1). Boston: Birkhäuser.Google Scholar
  47. Janssen, Michel. 1992. “H. A. Lorentz's Attempt to Give a Coordinate-free Formulation of the General Theory of Relativity.” In (Eisenstaedt and Kox 1992, 344–363).Google Scholar
  48. ——. 1999. “Rotation as the Nemesis of Einstein's Entwurf Theory.” In H. Goenner, J. Renn, J. Ritter, and T. Sauer (eds.), The Expanding Worlds of General Relativity (Einstein Studies, Vol. 7). Boston: Birkhäuser, 127–157.Google Scholar
  49. ——. 2005. “Of Pots and Holes: Einstein's Bumpy Road to General Relativity.” Annalen der Physik 14: Supplement 58–85. Reprinted in J. Renn (ed.) Einstein's Annalen Papers. The Complete Collection 1901–1922. Weinheim: Wiley-VCH, 2005.CrossRefGoogle Scholar
  50. Kichenassamy, S. 1993. “Variational Derivations of Einstein's Equations.” In (Earman et al. 1993, 185–205).Google Scholar
  51. Klein, Felix. 1917. “Zu Hilberts erster Note über die Grundlagen der Physik.” Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten: 469–482.Google Scholar
  52. ——. 1918a. “Über die Differentialgesetze für die Erhaltung von Impuls und Energie in der Einsteinschen Gravitationstheorie.” Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematischphysikalische Klasse. Nachrichten: 171–189.Google Scholar
  53. ——. 1918b. “Über die Integralform der Erhaltungssätze und die Theorie der räumlich-geschlossenen Welt.” Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten: 394–423.Google Scholar
  54. Klein, Martin J. 1970. Paul Ehrenfest. Vol. 1. The Making of a Theoretical Physicist. Amsterdam: North-Holland.Google Scholar
  55. Kox, Anne J. 1988. “Hendrik Antoon Lorentz, the Ether, and the General Theory of Relativity.” Archive for History of Exact Sciences 38: 67–78. Reprinted in (Howard and Stachel 1989, 201–212).CrossRefGoogle Scholar
  56. ——. 1992. “General Relativity in the Netherlands, 1915–1920.” In (Eisenstaedt and Kox 1992, 39–56).Google Scholar
  57. Levi-Civita, Tullio. 1917. “Sulla espressione analitica spettante al tensore gravitazionale nella teoria di Einstein.” Rendiconti della Reale Accademia dei Lincei. Atti 26, 1st semester: 381–391.Google Scholar
  58. Lorentz, Hendrik Antoon. 1915. “Het beginsel van Hamilton in Einstein's theorie der zwaartekracht.” Koninklijke Akademie van Wetenschappen te Amsterdam. Wis- en Natuurkundige Afdeeling. Verslagen van de Gewone Vergaderingen 23 (1914–15): 1073–1089. Reprinted in translation as “On Hamilton's Principle in Einstein's Theory of Gravitation.” Koninklijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings 19 (1916–17): 751–765. Page reference is to the translation.Google Scholar
  59. ——. 1916a. “Over Einstein's theorie der zwaartekracht. I.” Koninklijke Akademie van Wetenschappen te Amsterdam. Wis- en Natuurkundige Afdeeling. Verslagen van de Gewone Vergaderingen 24 (1915–16): 1389–1402. Reprinted in translation as “On Einstein's Theory of Gravitation. I.” Koninklijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings 19 (1916–17): 1341–1354.Google Scholar
  60. ——. 1916b. “Over Einstein's theorie der zwaartekracht. III.” Koninklijke Akademie van Wetenschappen te Amsterdam. Wis- en Natuurkundige Afdeeling. Verslagen van de Gewone Vergaderingen 25 (1916–17): 468–486. Reprinted in translation as “On Einstein's Theory of Gravitation. III.” Koninklijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings 20 (1917–18): 2–19.Google Scholar
  61. ——. 1916c. “Over Einstein's theorie der zwaartekracht. IV.” Koninklijke Akademie van Wetenschappen te Amsterdam. Wis- en Natuurkundige Afdeeling. Verslagen van de Gewone Vergaderingen 25 (1916–17): 1380–1396. Reprinted in translation as “On Einstein's Theory of Gravitation. IV.” Koninklijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings 20 (1917–18): 20–34.Google Scholar
  62. Noether, Emmy. 1918. “Invariante Variationsprobleme.” Königliche Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse. Nachrichten: 235–257.Google Scholar
  63. Norton, John D. 1984. “How Einstein Found his Field Equations, 1912–1915.” Historical Studies in the Physical Sciences 14: 253–316. Page references to reprint in (Howard and Stachel 1989, 101–159).Google Scholar
  64. ——. 1999. “Geometries in Collision: Einstein, Klein, and Riemann.” In (Gray 1999, 128–144).Google Scholar
  65. ——. 2000. “‘Nature is the Realisation of the Simplest Conceivable Mathematical Ideas’: Einstein and the Canon of Mathematical Simplicity.” Studies in History and Philosophy of Modern Physics 31: 135–170.CrossRefGoogle Scholar
  66. Rowe, David. 1999. “The Göttingen Response to General Relativity and Emmy Noether's Theorems.” In (Gray 1999, 189–234).Google Scholar
  67. Sauer, Tilman. 1999. “The Relativity of Discovery: Hilbert's First Note on the Foundations of Physics.” Archive for History of Exact Sciences 53: 529–575.Google Scholar
  68. Schrödinger, Erwin. 1918. “Die Energiekomponenten des Gravitationsfeldes.” Physikalische Zeitschrift 19: 4–7.Google Scholar
  69. Stachel, John. 1989. “Einstein's Search for General Covariance, 1912–1915.” (Based on a talk given in Jena in 1980.) In (Howard and Stachel 1989, 62–100).Google Scholar
  70. Van Dongen, Jeroen. 2002. Einstein's Unification: General Relativity and the Quest for Mathematical Naturalness. PhD. Thesis. University of Amsterdam.Google Scholar
  71. ——. 2004. “Einstein's Methodology, Semivectors, and the Unification of Electrons and Protons.” Archive for History of Exact Sciences 58: 219–254.CrossRefGoogle Scholar
  72. Wald, Robert M. 1984. General Relativity. Chicago: University of Chicago Press, 1984.Google Scholar
  73. Weyl, Hermann. 1918. Raum—Zeit—Materie. Vorlesungen über allgemeine Relativitätstheorie. Berlin: Springer.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Michel Janssen
    • Jürgen Renn

      There are no affiliations available

      Personalised recommendations