What was Einstein's “Fateful Prejudice”?

  • John D. Norton
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 250)

In the later pages of the notebook, as Einstein let general covariance slip away, he devised and abandoned a new proposal for his gravitational field equations. This same proposal, revived nearly three years later, opened passage to his final theory. In abandoning it in the notebook, Einstein had all but lost his last chance of deliverance. This chapter reports and develops our group's accounts of this decision. Einstein's later accounts of this decision blame it upon what he called the “fateful prejudice” of misinterpreting the Christoffel symbols. We suggest that Einstein's aberrant use and understanding of coordinate systems and coordinate conditions was as important as another fateful prejudice.

Keywords

Dust Mercury Manifold Covariance Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CPAE 4: Martin J. Klein, A. J. Kox, Jürgen Renn, and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 4. The Swiss Years: Writings, 1912–1914. Princeton: Princeton University Press, 1995.Google Scholar
  2. CPAE 4E: The Collected Papers of Albert Einstein. Vol. 4. The Swiss Years: Writings, 1912–1914. English edition translated by Anna Beck. Princeton: Princeton University Press, 1996.Google Scholar
  3. CPAE 5: Martin J. Klein, A. J. Kox, and Robert Schulmann (eds.), The Collected Papers of Albert Einstein. Vol. 5. The Swiss Years: Correspondence, 1902–1914. Princeton: Princeton University Press, 1993.Google Scholar
  4. CPAE 8: Robert Schulmann, A. J. Kox, Michel Janssen, and József Illy (eds.), The Collected Papers of Albert Einstein. Vol. 8. The Berlin Years: Correspondence, 1914–1918. Princeton: Princeton University Press, 1998. (2 Vols., Part A: 1914–1917, pp. 1–590; Part B: 1918, pp. 591–1118.)Google Scholar
  5. Einstein, Albert. 1913. “Zum gegenwärtigen Stande des Gravitationsproblems.” Physikalische Zeitschrift 14: 1249–1262, (CPAE 4, Doc. 17). (English translation in vol. 3 of this series.)Google Scholar
  6. ——. 1914a. “Prinzipielles zur verallgemeinerten Relativitätstheorie.” Physikalische Zeitschrift 15: 176–180, (CPAE 4, Doc. 25).Google Scholar
  7. ——. 1914b. “Physikalische Grundlagen einer Gravitationstheorie.” Naturforschende Gesellschaft in Zürich. Vierteljahrsschrift 58: 284–290, (CPAE 4, Doc. 16).Google Scholar
  8. ——. 1914c. “Die formale Grundlage der allgemeinen Relativitätstheorie.” Königlich Preussische Akademie der Wissenschaften (Berlin). Sitzungsberichte 1030–1085, (CPAE 6, Doc. 9).Google Scholar
  9. ——. 1915a. “Zur allgemeinen Relativitätstheorie,” Königlich Preussische Akademie der Wissen-schaften (Berlin). Sitzungsberichte 778–786, (CPAE 6, Doc. 21).Google Scholar
  10. ——. 1915b. “Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie.” Königlich Preussische Akademie der Wissenschaften (Berlin). Sitzungsberichte 831–839, (CPAE 6, Doc. 24).Google Scholar
  11. ——. 1916. “Die Grundlage der allgemeinen Relativitätstheorie,” Annalen der Physik 49: 769–822, (CPAE 6, Doc. 30).CrossRefGoogle Scholar
  12. ——. 1917. Relativity: the Special and the General Theory. Translated by R. W. Lawson. London: Methuen, [1977].Google Scholar
  13. ——. 1922. The Meaning of Relativity. London: Methuen. [Fifth ed. Princeton: Princeton University Press, 1974.]Google Scholar
  14. Einstein, Albert and Adriaan D Fokker. 1914. “Die Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentialkalküls.” Annalen der Physik 44: 321–328, (CPAE 4, Doc. 28).CrossRefGoogle Scholar
  15. Einstein, Albert and Marcel Grossmann. 1913. Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Leipzig: B.G.Teubner (separatum); with addendum by Einstein in Zeitschrift für Mathematik und Physik (1914) 63: 225–261, (CPAE 4, Docs. 13, 26).Google Scholar
  16. ——. 1914. “Kovarianzeigenschaften der Feldgleichungen der auf die verallgemeinerte Relativitätstheorie gegründeten Gravitationstheorie.” Zeitschrift für Mathematik und Physik 63: 215–225, (CPAE 6, Doc. 2).Google Scholar
  17. Fock, Vladimir. 1959. The Theory of Space Time and Gravitation. Translated by N. Kemmer. London: Per-gamon.Google Scholar
  18. Havas, Peter. 1964. “Four-dimensional Formulations of Newtonian Mechanics and their Relation to the Special and General Theory of Relativity.” Reviews of Modern Physics 36: 938–965.CrossRefGoogle Scholar
  19. Howard, Don and John D. Norton. 1993. “Out of the Labyrinth? Einstein, Hertz and the Göttingen Answer to the Hole Argument.” In J. Earman, M. Janssen, J. D. Norton (eds.), The Attraction of Gravitation: New Studies in History of General Relativity. Boston: Birkhäuser, 30–62.Google Scholar
  20. Janssen, Michel. 1999.“Rotation as the Nemesis of Einstein's ‘Entwurf’ Theory.” In H. Goenner, J. Renn and T. Sauer (eds.), The Expanding Worlds of General Relativity (Einstein Studies, Vol. 7). Boston: Birkhäuser, 127–157.Google Scholar
  21. Norton, John D. 1984 (1989). “How Einstein found his Field Equations: 1912–1915.” Historical Studies in the Physical Sciences 14: 253–316. Reprinted 1989 in D. Howard and J. Stachel (eds.), Einstein and the History of General Relativity (Einstein Studies, Vol. 1). Boston: Birkhäuser, 101–159.Google Scholar
  22. ——. 1985. “What was Einstein's Principle of Equivalence?” Studies in History and Philosophy of Science 16: 203–246. Reprinted 1989 in D. Howard and J. Stachel (eds.), Einstein and the History of General Relativity (Einstein Studies, Vol. 1). Boston: Birkhäuser, 5–47.Google Scholar
  23. ——. 1987. “Einstein, the Hole Argument and the Reality of Space.” In J. Forge (ed.), Measurement, Realism and Objectivity. Reidel, 153–188.Google Scholar
  24. ——. 1992. “Einstein, Nordström and the Early Demise of Scalar, Lorentz-Covariant Theories of Gravitation.” Archive for the History of Exact Sciences 45: 17–94.CrossRefGoogle Scholar
  25. ——. 1993. “Einstein and Nordström: Some Lesser-Known Thought Experiments in Gravitation.” In J. Earman, M. Janssen and J. D. Norton (eds.), The Attraction of Gravitation: New Studies in the History of General Relativity (Einstein Studies, Vol. 5). Boston: Birkhäuser, 3–29.Google Scholar
  26. Stachel, John. 1980. “Einstein's Search for General Covariance.” A paper read at the Ninth International Conference on General Relativity and Gravitation, Jena. Printed 1989 in D. Howard and J. Stachel (eds.), Einstein and the History of General Relativity (Einstein Studies, Vol. 1). Boston: Birkhäuser, 63–100.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • John D. Norton

    There are no affiliations available

    Personalised recommendations