Skip to main content

Physical And Engineering Perspectives Of In Vitro Plant Cryopreservation

  • Chapter
  • First Online:
Plant Tissue Culture Engineering

Part of the book series: Focus on Biotechnology ((FOBI,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuller, B.J.; Lane N. and Benson E.E. (2004) (Eds.) Life in the Frozen State. CRC Press, London, UK.

    Google Scholar 

  2. Hobbs, P.V. (1974) Ice Physics. Clarendon Press, Oxford. UK.

    Google Scholar 

  3. Ball, P. (1999) H2O a Biography of Water. Phoenix Press, London, UK.

    Google Scholar 

  4. Franks, F. (1972) Water: A Comprehensive Treatise Volume I. The Physical and Physical Chemistry of Water. Plenum Press, London, UK.

    Google Scholar 

  5. Mazur, P. (2004) Principles of cryobiology. In: Fuller, B.; Lane, N. and Benson, E.E. (Eds.) Life in the Frozen State. CRC Press, London, UK; pp. 4-65.

    Google Scholar 

  6. Price, W. (2003) Snow crystals- A History of their Study and Microscopy. Quekett J. Microscopy 39: 483 490.

    Google Scholar 

  7. Muldrew, K.; Acker, J.; Elliott, A.W. and McGann, L.E. (2004) The water to ice transition. In: Fuller, B.; Lane, N. and Benson, E.E. (Eds.) Life in the Frozen State. CRC Press, London, UK; pp. 67-108.

    Google Scholar 

  8. Meryman, H.T. and Williams, R.J. (1984) Basic principles of freezing injury to plant cells; natural tolerance and approaches to cryopreservation. In: Kartha, K.K. (Ed.) Cryopreservation of Plant Cells and Organs. CRC Press, Florida, USA; pp.14-48.

    Google Scholar 

  9. Burton, E.F. and Oliver, W.F. (1935) The crystal structure of ice at low temperature. Proc. Roy. Soc.A153: 166-172.

    Google Scholar 

  10. Dowell, L.G.; Molne, S.W. and Rinfret, A.P. (1962) A low-temperature x-ray diffraction study of ice structures formed on aqueous gelatin gels. Biochem. Biophys. Acta. 59: 158-167.

    CAS  PubMed  Google Scholar 

  11. Kartha, K.K. (1984) Meristem culture and germplasm preservation, In: Kartha, K.K. (Ed.) Cryopreservation of Plant Cells and Organs. CRC Press, Florida, USA; pp. 115-133.

    Google Scholar 

  12. Kartha, K.K.; Leung, N.L. and Moroginski, L.A. (1982) In vitro growth and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz.) Zeitschrift Pflanzenphysiol. 107: 133 140.

    Google Scholar 

  13. Grout, B.W.W. and Henshaw, G.G. (1978) Freeze preservation of potato shoot-tips. Ann. Bot. 42: 12271229.

    Google Scholar 

  14. Benson, E.E.; Chabrillange, N. and Engelmann, F. (1992) Mise au point de méthods de cryoconservation de méristèms pour la conservation a long terme des resources génétiques du manioc (Manihot spp.) Rapport de fin d’etude, Laboratoire de Ressources Génétiques et Amélioration des Plantes Tropicale, ORSTOM, Montpellier, France.

    Google Scholar 

  15. Mix-Wagner, G.; Schumacher, H.M. and Cross, R.J. (2002) Recovery of potato apices after several years of storage in liquid nitrogen. CryoLetters 24: 33-41.

    Google Scholar 

  16. Luyet, B.J. (1937) The vitrification of organic colloids of protoplasms. Biodynamica 1: 1-14.

    Google Scholar 

  17. Benson, E.E.; Harding, K. and Smith, H. (1989) The effects of pre-and post-freeze light on the recovery of cryopreserved shoot-tips of Solanum tuberosum. CryoLetters 10: 323-344.

    Google Scholar 

  18. Wesley-Smith, J.; Vertucci, C.W.; Berjak, P. and Pammenter, N.W. (1999) A method for the cryopreservation of embryonic axes at ultra-rapid cooling rates. In: Marzalina, M; Khoo, KC; Jayanthi, N; Tsan, F.Y. and Krishnapillay, B. (Eds.) IUFRO Symposium 1998 Recalcitrant Seeds. FRIM, Kuala Lumpur, Malaysia; pp.132-139.

    Google Scholar 

  19. Wesley-Smith, J.; Vertucci, C.W.; Berjak, P.; Pammenter, N.W. and Crane, J. (1992) Cryopreservation of desiccation–sensitive axes of Camelia sinensis in relation to dehydration, freezing rate and the thermal properties of tissue water. J.Plant Physiol.140: 596-604.

    Google Scholar 

  20. Benson, E.E. (2004) Cryoconserving algal and plant diversity: historical perspectives and future challenges. In: Fuller, B; Lane, N. and Benson E.E. (Eds.) Life in the Frozen State. CRC Press, London, UK; pp. 299-328.

    Google Scholar 

  21. Sakai, A. (2004) Plant cryopreservation. In: Fuller, B; Lane, N. and Benson E.E. (Eds.) Life in the Frozen State. CRC Press, London, UK; pp. 329-346.

    Google Scholar 

  22. Benson, E.E. (1997) Analytical techniques in low temperature biology: Symposium summaries (Society for Low Temperature Biology) CryoLetters 18: 65-76.

    Google Scholar 

  23. Withers, L.A. and King, P.J (1980) A simple freezing unit and routine cryopreservation method for plant cell cultures. CryoLetters 1: 213-220.

    Google Scholar 

  24. Reed, B.M.; Dumet, D.; J.M. DeNoma, and E.E. Benson. (2001) Validation of cryopreservation protocols for plant germplasm conservation: a pilot study using Ribes L. Biodiversity and Conservation 10: 1-11.

    Google Scholar 

  25. Diller, K.R., (1997) Engineering-based contributions in cryobiology. Cryobiology 34: 304-314.

    CAS  PubMed  Google Scholar 

  26. Diller, K.R. and Cravalho, E.G. (1970) A cryomicroscope for the study of freezing and thawing processes in biological cells. Cryobiology 7: 191-199.

    CAS  PubMed  Google Scholar 

  27. McGrath, J.J. (1987) Temperature-controlled cryogenic light microscopy and introduction to cryomicroscopy. In: Grout, B.W.W. and Morris, G.J. (Eds.) The Effects of Low Temperatures on Biological Systems. Arnold, London, UK; pp. 234-267.

    Google Scholar 

  28. Fleck, R.A. (1998) Mechanisms of cell damage and recovery in cryopreserved freshwater protists. Ph.D Thesis, University of Abertay Dundee, Scotland.

    Google Scholar 

  29. Hayes, A.R. and Stein, A. (1989) A cryomicroscope. CryoLetters 10: 257-268.

    Google Scholar 

  30. Fleck, R.A.; Day, J.G.; Rana, K.J. and Benson, E.E. (1997) Visualisation of cryoinjury and freeze events in the coenocytic alga Vaucheria sessilis using cryomicroscopy. CryoLetters 18: 343-354.

    Google Scholar 

  31. Evans, J.; Adlers, J.; Mitchell, J.; Blanshard, J. and Rodger, G. (1996) Use of a confocal laser scanning microscope with a conduction transfer stage in order to observe dynamically the freeze-thaw cycle of an autofluorescent substance and to measure ice crystal size in situ. Cryobiology 33: 27-33.

    Google Scholar 

  32. Walcerz, D.B. and Diller, K.R. (1991) Quantitative light microscopy of combined perfusion and freezing processes. J. Micros. 161: 297-311.

    CAS  Google Scholar 

  33. Ishikawa, M.; Ide, H.; Price, W.S.; Arata, Y. and Kitashima, T. (2000) Freezing behaviours in plant tissues visualized by NMR microscopy and their regulatory mechanisms. In: Engelmann, F. and Takagi, H. (Eds.) Cryopreservation of Tropical Plant Germplasm: Current Research Progress and Application. IPGRI, Rome, Italy; pp. 22-35.

    Google Scholar 

  34. Ishikawa, M.; Price, W.S.; Ide, H. and Arata, Y. (1997) Visualization of freezing behaviour in leaf and flower buds of Full-Moon Maple by nuclear magnetic resonance microscopy. Plant Physiol. 115: 15151524.

    Google Scholar 

  35. Wolfe, J.; Bryant, G. and Koster, K.L. (2002) What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters 23: 157-166.

    PubMed  Google Scholar 

  36. Block, W. (2003) Water status and thermal analysis of alginate beads used in cryopreservation of plant germplasm. Cryobiology 47: 59-72.

    CAS  PubMed  Google Scholar 

  37. Dussert, S.; Chabrillange, N.; Rocquelin, G.; Engelmann, F.; Lopez, M. and Hamon, S. (2001) Tolerance of coffee (Coffea spp.) seeds to ultra-low temperature exposure in relation to calorimetric properties of tissue water, lipid composition, and cooling procedure. Physiol. Plantarum 12: 495-504.

    Google Scholar 

  38. Benson, E.E.; Reed, B.M.; Brennan, R.M.; Clacher, K.A. and Ross, D.A. (1996) Use of thermal analysis in the evaluation of cryopreservation protocols for Ribes nigrum L. germplasm. CryoLetters 17: 347-362.

    Google Scholar 

  39. Martínez, D. and Revilla, M.A. (1998) Cold acclimation and thermal transitions in the cryopreservation of hop shoot tips. CryoLetters 19: 333-342.

    Google Scholar 

  40. Martínez, D.; Arroyo-García, R. and Revilla, M.A. (1999) Cryopreservation of in vitro shoot-tips of Olea europaea L. var. Arbequina. CryoLetters 20: 29-36.

    Google Scholar 

  41. Santos, I.R.I. and Stushnoff, C. (2003) Desiccation and freezing tolerance of embryonic axes from Citrus sinensis [L.] Osb. pretreated with sucrose. CryoLetters 24: 281-292.

    PubMed  Google Scholar 

  42. Vertucci, C.W.; Berjak, P.; Pammenter, N.W. and Crane, J. (1991) Cryopreservation of embryonic axes of an homeohydrous (recalcitrant) seed in relation to calorimetric properties of tissue water. CryoLetters 12: 339-350.

    Google Scholar 

  43. Pritchard, H.W. and Manger, K.R. (1998) A calorimetric perspective on desiccation stress during preservation procedures with recalcitrant seeds of Quercus robor L. CryoLetters 19: 23-30.

    Google Scholar 

  44. Crowe, J.H.; Carpenter, J.F.; Crowe, L.M. and Anchordoguy, T.J. (1990) Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27: 219-231.

    CAS  Google Scholar 

  45. Dereuddre, J.; Hassen, N.; Bland, S. and Kaminski, M. (1991) Resistance of alginate-coated somatic embryos of carrot (Daucus carotaL.) to desiccation and freezing in liquid nitrogen. Cryoletters 12: 135 148.

    Google Scholar 

  46. Dumet, D.; Block, W.; Worland, R.; Reed, B.M. and Benson, E.E. (2000) Profiling cryopreservation protocols for Ribes ciliatum using differential scanning calorimetry. CryoLetters 21: 367-378.

    CAS  PubMed  Google Scholar 

  47. Leprince, O. and Walters-Vertucci, C. (1995) A calorimetric study of the glass transition behaviours in axes of bean seeds with relevance to storage stability. Plant Physiol.109: 1471-1481.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, C-H. (2001) Mixed-chain phospholipids: structures and chain-melting behaviour. Lipids 36: 1077-1097.

    CAS  PubMed  Google Scholar 

  49. Tan, C.P. and Che Man, Y.B. (2002) Recent developments in differential scanning calorimetry for assessing oxidative deterioration of vegetable oils. Trends Food Sci. Technol. 13: 312-318.

    CAS  Google Scholar 

  50. Benson, E.E. and Bremner, D.H. (2004) Oxidative stress in the frozen plant: a free radical point of view. In: Fuller, B; Lane, N. and Benson E.E. (Eds.) Life in the Frozen State Fuller. CRC Press, London, UK; pp. 299-328.

    Google Scholar 

  51. Turner, S.; Senaratna, T.; Touchell, D.; Bunn, E.; Dixon, K. and Tan, B. (2001) Stereochemical arrangement of hydroxyl groups in sugar and polyalcohol molecules as an important factor in effective cryopreservation. Plant Sci. 160: 489-497.

    CAS  PubMed  Google Scholar 

  52. Wang, G.M. and Haymet, A.D.J. (1998) Trehalose and other sugar solutions at low temperature: modulated differential scanning calorimetry (MDSC). J. Physical Chem. B 102: 5341-5347.

    CAS  Google Scholar 

  53. Devireddy, R.V. and Bischof, J.C. (1998) Measurement of water transport during freezing in mammalian liver tissue: part II – the use of differential scanning calorimetry, J. Biomechanical Eng. 120: 559-569.

    CAS  Google Scholar 

  54. Luo, D.L.; Han, X.; He, L.; Cui, X.; Cheng, S.; Lu, C.; Liu, J. and Gao, D. (2002) A modified differential scanning calorimetry for determination of cell volumetric change during the freezing process. CryoLetters 23: 229-236.

    PubMed  Google Scholar 

  55. Bachiri, Y.; Bajon, C.; Sauvanet, A.; Gazeau, C. and Morisset, C. (2000) Effect of osmotic stress on tolerance of air-drying and cryopreservation of Arabidopsis thaliana suspension cells. Protoplasma 214: 227-243.

    CAS  Google Scholar 

  56. Bachiri, Y.; Song, G.Q.; Plessis, P.; Shoar-Ghaffari, A.; Rekab, T. and Morisset, C. (2001) Routine cryopreservation of kiwifruit (Actinidia spp) Germplasm by encapsulation-dehydration: importance of plant growth regulators. CryoLetters 22: 61-74.

    CAS  PubMed  Google Scholar 

  57. Dumet, D.; Grapin, A.; Bailly, C. and Dorion, N. (2002) Revisiting crucial steps of an encapsulation/desiccation based cryopreservation process: importance of thawing method in the case of Pelargonium meristems. Plant Sci. 163: 1121-1127.

    CAS  Google Scholar 

  58. Markarian, S.A.; Bonora, S.; Bagramyan, K.A. and Arakelyan, V.B. (2004) Glass-forming property of the system diethyl sulphoxide/water and its cryoprotective action on Escherichia coli survival. Cryobiology 49: 1-9.

    CAS  PubMed  Google Scholar 

  59. Vertucci, C.W. (1990) Calorimetric studies of the state of water in seed tissues. Biophysical J. 58: 14631471.

    Google Scholar 

  60. Pritchard, H.W.; Tompsett, P.B.; Manger, K. and Smidt, W.J. (1995) The effect of moisture content on the low temperature responses of Araucaria hunsteinii seed and embryos. Ann. Bot. 76: 79-88.

    Google Scholar 

  61. Akula, C.; Akula, A. and Drew, R. (2003) Somatic embryogenesis in clonal neem, Azadirachta indica A. Juss and analysis for in vitro azadirachtin production. In Vitro Cell. Dev. Biol.-Plant 39: 304-310.

    CAS  Google Scholar 

  62. Simon, S.L. (2001) Temperature-modulated differential scanning calorimetry: theory and application. Thermochimica Acta 374: 55-71.

    CAS  Google Scholar 

  63. Krishnapillay, B. (2000) Towards the use of cryopreservation as a technique for the conservation of tropical recalcitrant seeded species. In: Razdaan, M.K. and Cocking, E.C. (Eds.) Conservation of Plant Genetic Resources In Vitro, Volume II. Applications and Limitations. Science Publishers, Inc, New Hampshile, USA; pp.137-163.

    Google Scholar 

  64. Towill, L.E and Bonnart, R. (2003) Cracking in a vitrification solution during cooling and warming does not affect growth of cryopreserved mint shoot tips. CryoLetters 24: 341-346.

    PubMed  Google Scholar 

  65. Murase, N.; Abe, S.L Takahashi, H.; Katagiri, C; and Kikegawa, T. (2004) Two-dimensional diffraction study of ice crysallisaiton in polymer gels. CryoLetters 25: 227-234.

    CAS  PubMed  Google Scholar 

  66. Yuan, Y. and Diller, K.R. (2001) Study of freezing biological systems using optical differential scanning calorimeter. Bioengineering Conference, American Society for Mechanical Engineers, (ASME) 2001, Biomedical Engineering Division (BED) Proceedings 50: 117-118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Benson, E.E., Johnston, J., Muthusamy, J., Harding, K. (2008). Physical And Engineering Perspectives Of In Vitro Plant Cryopreservation. In: Gupta, S.D., Ibaraki, Y. (eds) Plant Tissue Culture Engineering. Focus on Biotechnology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3694-1_24

Download citation

Publish with us

Policies and ethics