Monitoring Gene Expression In Plant Tissues

Using green fluorescent protein with automated image collection and analysis
  • John J. Finer
  • Summer L. Beck
  • Marco T. Buenrostro-Nava
  • YU-TSEH CHI
  • PETER  P. LING
Part of the Focus on Biotechnology book series (FOBI, volume 6)

Keywords

Maize Chlorophyll Torque Codon Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kassler, M. (2001) Agricultural automation in the new millennium. Comput. Electron. Agric. 30: 237 240.CrossRefGoogle Scholar
  2. [2]
    Kacira, M. and Ling, P.P. (2001) Design and development of an automated and non-contact sensing system for continuous monitoring of plant health and growth. Trans. Am. Soc. Agric. Eng. 44: 989-996.Google Scholar
  3. [3]
    Saiki, R.; Scharf, S.; Faloona, F.; Mullis, K.; Horn, G.; Erlich, H. and Arnheim, N. (1985) A novel method for the parental diagnosis of sickle cell anemia. Am. J. Hum. Gene. 37: A172.Google Scholar
  4. [4]
    Lee, M.S.; Chang, K.S.; Cabanillas, F.; Freireich, E.J.; Trujillo, J.M. and Stass, S.M. (1987) Detection of minimal residual cells carrying the T-14 18 by DNA sequence amplification. Science 237: 175-178.PubMedCrossRefGoogle Scholar
  5. [5]
    Schena, M.; Shalon, D.; Heller, R.; Chai, A.; Brown, P.O. and Davis, R.W. (1996) Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. - USA 93: 10614-10619.CrossRefGoogle Scholar
  6. [6]
    Kazan, K.; Schenk, P.M.; Wilson, I. and Manners, J.M. (2001) DNA microarrays: New tools in the analysis of plant defense responses. Mol. Plant Path. 2: 177-185.CrossRefGoogle Scholar
  7. [7]
    Khan, J.; Wei, J.S.; Ringner, M.; Saal, L.H.; Ladanyi, M.; Westermann, F.; Berthold, F.; Schwab, M.; Antonescu, C.R.; Peterson, C. and Meltzer, P.S. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7: 673-679.PubMedCrossRefGoogle Scholar
  8. [8]
    Arcellana-Panlilio, M. and Robbins, S.M. (2002) Cutting-edge technology I. Global gene expression profiling using DNA microarrays. Am. J. Physiol. 282: G397-G402.Google Scholar
  9. [9]
    Eisen, M.B. and Brown, P.O. (1999) cDNA Preparation and Characterization. In: Weissman, S. (Ed.) DNA arrays for analysis of gene expression. Academic Press, New York; pp.179-205.Google Scholar
  10. [10]
    Finer, J.J.; Finer, K.R. and Santarem, E.R. (1996) Plant cell transformation, physical methods for. In: Meyers, R.A. (Ed.) Encyclopedia of Molecular Biology and Molecular Medicine. VCH Publishers, The Netherlands; pp. 458-465.Google Scholar
  11. [11]
    Klein, T.M.; Wolf, E.D.; Wu, R. and Sanford, J.C. (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70-73.CrossRefGoogle Scholar
  12. [12]
    Horsch, R.B.; Fry, J.E.; Hoffman, N.L.; Eicholtz, D.; Rogers, S.G. and Fraley, R.T. (1985) A simple and general method for transferring genes into plants. Science 227: 1229-1231.CrossRefGoogle Scholar
  13. [13]
    Finer, J.J.; Vain, P.; Jones, M.W. and McMullen, M.D.(1992) Development of the Particle Inflow Gun for DNA delivery to plant cells. Plant Cell Rep. 11: 232-238.CrossRefGoogle Scholar
  14. [14]
    Sanford, J.C.; DeVit, M.J.; Russell, J.A.; Smith, F.D.; Harpending, P.R.; Roy, M.K. and Johnston, S.A. (1991) An improved, helium-driven biolistic device. Technique 3: 3-16.Google Scholar
  15. [15]
    Vain, P.; McMullen, M.D. and Finer, J.J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12: 84-88.CrossRefGoogle Scholar
  16. [16]
    Hadi, M.Z.; McMullen, M.D. and Finer, J.J. (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep. 15: 500 -505.CrossRefGoogle Scholar
  17. [17]
    Kohli, A.; Griffiths, S.; Palacios, N.; Twyman, R.M.; Vain, P.; Laurie, D. and Christou, P. (1999) Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J. 17: 591-601.PubMedCrossRefGoogle Scholar
  18. [18]
    Fu, X.; Duc, L.T.; Fontana, S.; Bong, B.B.; Tinjuangjun, P,; Sudhakar, D.; Twyman, R.M.; Christou, P. and Kohli, A. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copynumber transgenic plants with simple integration patterns. Trans. Res. 9: 11-19.CrossRefGoogle Scholar
  19. [19]
    Napoli, C.; Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-supression of homologous genes in trans. Plant Cell 2: 279-289.PubMedCrossRefGoogle Scholar
  20. [20]
    Chilton, M.D.; Drummond, M.J.; Merlo, D.J.; Sciaky, D.; Montoya, A.L.; Gordon, M.P. and Nester, E.W. (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263-271.PubMedCrossRefGoogle Scholar
  21. [21]
    Hansen, G.; Das, A. and Chilton, M.D. (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc. Natl. Acad. Sci.- USA 91: 7603-7607.PubMedCrossRefGoogle Scholar
  22. [22]
    Stachel, S.E.; Messens, E.; Van Montagu, M. and Zambryski, P. (1985) Identification of the signal molecules produced by wounded plant cells which activate the T-DNA transfer process in Agrobacterium tumefaciens. Nature 318: 624-629.CrossRefGoogle Scholar
  23. [23]
    Trick, H.N. and Finer, J.J. (1997) SAAT: Sonication Assisted Agrobacterium-mediated Transformation. Transgenic Res. 6: 329-336.CrossRefGoogle Scholar
  24. [24]
    Zupan, J.; Muth, T.R.; Draper, O. and Zambryski, P. (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23: 11-28.PubMedCrossRefGoogle Scholar
  25. [25]
    Ponappa, T.; Brzozowski, A.E. and Finer, J.J. (1999) Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein (GFP). Plant Cell Rep. 19: 6-12.CrossRefGoogle Scholar
  26. [26]
    Hunold, R.; Bronner, R. and Hahne, G. (1994) Early events in microprojectile bombardment: cell viability and particle location. Plant J. 5: 593-604.CrossRefGoogle Scholar
  27. [27]
    Svitashev, S.K.; Pawlowski, W.P.; Makarevitch, I.; Plank, D.W. and Somers, D.A. (2002) Complex transgene locus structures implicate multiple mechanisms for plant transgene rearrangement. Plant J. 32: 433–445.PubMedCrossRefGoogle Scholar
  28. [28]
    Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405.CrossRefGoogle Scholar
  29. [29]
    Ridgway, E.B. and Ashley, C.C. (1967) Calcium transients in single muscle fibers. Biochem. Biophys. Res. Commun. 29: 229–230.PubMedCrossRefGoogle Scholar
  30. [30]
    Niedz, R.P.; Sussman, M.R. and Satterlee, J.S. (1995) Green Fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Rep. 14: 403-406.CrossRefGoogle Scholar
  31. [31]
    Stewart, C.N. (2001) The utility of green fluorescent protein in transgenic plants. Plant Cell Rep. 20: 376-382.PubMedCrossRefGoogle Scholar
  32. [32]
    Haseloff, J. and Amos, B. (1995) GFP in plants. Trends in Genetics 8: 328-329.CrossRefGoogle Scholar
  33. [33]
    Vanden Wymelenberg, A.J.; Cullen, D.; Spear, R.N.; Schoenike, B. and Andrews, J.H. (1997) Expression of green fluorescent protein in Aureobasidium pullulans and quantification of the fungus on leaf surfaces. BioTechniques 23: 686-690.PubMedGoogle Scholar
  34. [34]
    Haseloff, J. and Siemering, K.R. (1998) The uses of green fluorescent protein in plants. In: Chalfie, M. (Ed.) Green Fluorescent Protein: Properties, Application, and Protocols. Wiley-Liss, Inc., New York; pp. 191-219.Google Scholar
  35. [35]
    Nagatani, N.; Takuni, S.; Tomiyama, M.; Shimada, T. and Tamiya, E. (1997) Semi-real time imaging of the expression of a maize polyubiquitin promoter-GFP gene in transgenic rice. Plant Sci.124: 49-56.CrossRefGoogle Scholar
  36. [36]
    Grebenok, R.J.; Lambert, G.M. and Galbraith, D.W. (1997) Characterization of the targeted nuclear accumulation of GFP within the cells of transgenic plants. Plant J. 12: 685-696.Google Scholar
  37. [37]
    Piston, D.W.; Patterson, G.H. and Knobel, S.M. (1999) Quantitative imaging of the green fluorescent protein (GFP). In: Methods in Cell Biology, Nashville, Tennessee; pp. 31-48.Google Scholar
  38. [38]
    Maximova, S.N.; Dandekar, A.M.; and Guiltinan, M.J. (1998) Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Molec. Biol. 37: 549 – 559.CrossRefGoogle Scholar
  39. [39]
    Hauser, K.; Haynes, W.J.; Kung, C.; Plattner, H. and Kissmehl, R. (2000) Expression of the green fluorescent protein in Paramecium tetraurelia. Eur. J. Cell Biol. 79: 144-149.PubMedCrossRefGoogle Scholar
  40. [40]
    Spear, R.N.; Cullen, D. and Andrews, J.H. (1999) Fluorescent labels, confocal microscopy, and quantitative image analysis in study of fungal biology. In:Methods in Enzymology, Vol. 307: 607-623.Google Scholar
  41. [41]
    Scholz, O.; Thiel, A.; Hillen, W. and Niederweis, M. (2000) Quantitative analysis of gene expression with an improved green fluorescent protein. Eur. J. Biochem. 267: 1565-1570.PubMedCrossRefGoogle Scholar
  42. [42]
    Inoué, S.; Shimomura, O.; Goda, M.; Shribak, M. and Tran, P.T. (2002) Fluorescence polarization of green fluorescence protein. Proc. Natl. Acad. Sci. -USA 99: 4272-4277.CrossRefGoogle Scholar
  43. [43]
    Buenrostro-Nava, M.T.; Ling, P.P. and Finer, J.J. (2003) Development of an automated image collection system for generating time-lapse animations of plant tissue growth and green fluorescent protein gene expression. In: Vasil, I.K. (Ed.) Plant Biotechnology 2002 and Beyond. Kluwer Academic Publishers, The Netherlands; pp. 293-295.Google Scholar
  44. [44]
    Buenrostro-Nava, M.T.; Ling, P.P. and Finer, J.J. (2005) Development of an automated image acquisition system for monitoring gene expression and tissue growth. Trans. Am. Soc. Agric. Eng. (in press).Google Scholar
  45. [45]
    Svedlow, M.; McGillem, C.D. and Anuta, P.E. (1978)Image registration: similarity measure and preprocessing method comparisons. Aerospace and Electronic Systems, IEEE Trans. AES 14: 141-149.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • John J. Finer
    • 1
  • Summer L. Beck
    • 1
    • 3
  • Marco T. Buenrostro-Nava
    • 1
    • 4
  • YU-TSEH CHI
    • 2
    • 5
  • PETER  P. LING
    • 2
  1. 1.Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterUSA
  2. 2.Department of FoodAgricultural and Biological Engineering,OARDC/The Ohio State UniversityWoosterUSA
  3. 3.DuPont Agriculture and NutritionWilmingtonUSA
  4. 4.IREGEP, Colegio de PostgraduadosIREGEP, Colegio de PostgraduadosTexcoco
  5. 5.57 228 Lane SectionTianjhong TownTaiwan

Personalised recommendations