The Structures of The Nitrogenase Proteins and Stabilized Complexes

  • P. M. C. Benton
  • J. W. Peters
Part of the Nitrogen Fixation: Origins, Applications, and Research Progress book series (NITR, volume 1)


The structural characterization of the nitrogenase components has contributed, and continues to contribute, significantly to our understanding of enzymatic nitrogen reduction. Nitrogenase structure/function has been a rich area of research for several decades (reviewed in Kim and Rees, 1994; Peters et al., 1995; Howard and Rees, 1996; Rees and Howard, 1999; 2000; Rees 2002; Lawson and Smith, 2002) and the advent of detailed structures of the nitrogenase components is a relatively recent event. The structures of the Fe protein and MoFe protein from Azotobacter vinelandii appeared in the journals Science and Nature in 1992 to an enthusiastic audience (Georgiadis et al., 1992; Kim and Rees, 1992a; Kim and Rees, 1992b). These structures have had a significant impact on nitrogenase research because they (1) provide the basis for rationalizing biochemical results and (2) serve to design models for catalysis that can be tested through biochemical and biophysical studies. Subsequent to the structural characterization of the native nitrogenase components, the crystallographic analysis of defined states of the component proteins relevant to catalysis has offered significant insights to the nitrogenase research community.


MoFe Protein High Resolution Structure Clostridium Pasteurianum Cysteinyl Residue Carbon Monoxide Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. M., Chatterjee, R., Madden, M. S., Ludden, P. W., and Shah, V. K. (1994). Biosynthesis of the iron-mol ybde num cofactor of nitrogenase. Crit Rev. Biotechno 1., 14, 225–249.CrossRefGoogle Scholar
  2. Benton, P. M. C ., Mayer, S. M., Shao, J., Hoffman, B. M., Dean, D. R., and Seefeldt, L. C. (2001). Interactio n of acet ylene a nd cyanide with the resting state of nitrogenase alphas-substituted MoFe proteins. Biochemistry, 40, 13816–13825.CrossRefGoogle Scholar
  3. Bolin, J. T., Campobasso, N., Muchmore, S. W., Morgan, T. V., and Mortenson, L. E. (1993). The stucture and environment of the metal clusters in the nitrogenase MoFe protein from Clostridium pasteurianum. In E. I. Stiefel, D. Coucouvanis, and W. E. Newton (Eds), Molybdenum Enzymes, Cofactors and Model Systems(pp. 186–195). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  4. Brigle, K. E., Newton, W. E., and Dean, D. R. (1985). Complete nucleotide sequence of the Azotobacter vinelandii nitrogenase structural gene cluster. Gene, 37, 37–44.CrossRefGoogle Scholar
  5. Chan, M. K., Kim, J., and Rees, D. C. (1993). The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures. Science, 260, 792–794.CrossRefGoogle Scholar
  6. Chiu, H., Peters, J. W., Lanzilotta, W. N., R yle, M. J., Seefeldt, L. C, Howard, J. B., and Rees, D. C. (2001). MgATP-bound and nucleotide-free st ructures of a nitr ogenase prot ein complex bet ween the Leu-127-delta-Fe protein and the Mo Feprotein. Biochemistry, 40, 641–650.CrossRefGoogle Scholar
  7. Christiansen, J., Goodwin, P. J., Lanzilotta, W. N., Seefeldt, L. C, and Dean, D. R. (1998). Catal ytic and bio physical properti es of a nitrogena se apo-MoF e pro tein produced by a nifB deletion mutant o fAzotobacte r vinelandii. Biochem istry, 37, 12611–12623.CrossRefGoogle Scholar
  8. Crane, B. R., Siegel, L. M., and Getzoff, E. D. (1995). Sulfite reductase structure at 1.6 A: Evolution and catalysis for reduction of inorganic anions. Science, 270, 59–67.CrossRefGoogle Scholar
  9. Crane, B. R., Siegel, L. M, and Getzoff, E. D. (1997). Structures of the siroheme- and Fe4S4-containing active center of sulfite reductase in different states of oxidation: Heme activation via reduction-gated exogenous ligand exchange. Biochemistry, 36, 12101–1211.CrossRefGoogle Scholar
  10. Dance, I. G. (1994). The binding and reduction of di nitrogen at an Fe4 face of the FeMo cluster of nitrogenase. Aust. J. Chem ., 47, 979–990.CrossRefGoogle Scholar
  11. Dance, I. (1996). Theore tical inve stigations of the me chanism of biological nitrogen fixation at the FeMo cluster site. J. Biol. Inorg. Chem., 1, 581–586.CrossRefGoogle Scholar
  12. Dance, L. (1998). Understanding structure and reactivity of new fundamental inorganic molecules: Metal sulfides, metallocarbohedrenes, and nitrogenase. Chem. Commun., 523–530.Google Scholar
  13. Darnault, C, Volbeda, A., Kim, E. J., Legrand, P., Vernede, X., Lindahl, P. A., and Fontecilla-Camps, J. C. (2002). Ni-Zn-[Fe(4)-S(4)] and Ni-Ni-[Fe(4)-S(4)] clusters in closed and open alpha subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nature Struct. Biol., 10, 271–279.CrossRefGoogle Scholar
  14. Dean, D. R., Setterquist, R. A., Brigle, K. E., Scott, D. J., Laird, N. F., and Newton, W. E. (1990). Evidence that conserved residues Cys-62 and Cys-154 within the Azotobacter vinelandii nitrogenase MoFe protein a-subunit are essential for nitrogenase activity but conserved residues His-83 and Cys-88 are not. Mol. Microbiol., 4, 1505–1512.CrossRefGoogle Scholar
  15. Deng, H., and Hoffman, R. (1993). How N2 might be activated by the FeMo-cofactor in nitrogenase. Angew. Chem. Int. Ed. Engl., 32, 1062–1065.CrossRefGoogle Scholar
  16. Dobbek, H., Svetlitchnyi, V., Gremer, L., Huber, R., and Meyer, O. (2001). Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science, 293, 1281–1285.CrossRefGoogle Scholar
  17. Doukov, T. L., Iverson, T. M., Seravalli, J., Ragsdale, S. W., and Drennan, C. L. (2002). A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science,298, 567–572.CrossRefGoogle Scholar
  18. Drennan, C. L., Heo, J., Sintchak, M. D., Schreiter, E., and Ludden, P. W. (2001). Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc.Natl Acad. Sci. U.S.A., 98, 11973–11978.CrossRefGoogle Scholar
  19. Durrant, M. C. (2001a). Controlled protonation of iron-molybdenum cofactor by nitrogenase: A structural and theoretical analysis. Biochem. J., 355, 569–576.Google Scholar
  20. Durrant, M. C. (2001b). A molybdenum-centred model for nitrogenase catalysis. Inorg. Chem. Commun., 4, 60–62.CrossRefGoogle Scholar
  21. Duyvis, M. G., Wassink, H., and Haaker, H. (1996). Formation and characterization of a transition state complex of Azotobacter vinelandii nitrogenase. FEBS Lett., 380, 233–236.CrossRefGoogle Scholar
  22. Einsle, O., Tezcan, F. A., Andrade, S. L., Schmid, B., Yoshida, M., Howard, J. B., and Rees, D. C. (2002). Nitrogenase MoFe-protein at 1.16 A resolution: A central ligand in the FeMo-cofactor. Science, 297,1696–1700.CrossRefGoogle Scholar
  23. Gavini, N., and Burgess, B. K. (1992). FeMo cofactor synthesis by a nifli mutant with altered MgATP reactivity. J. Biol Chem., 267, 21179–21186.Google Scholar
  24. Georgiadis, M. M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J. J., and Rees, D. C. (1992). Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science, 257, 1653–1659.CrossRefGoogle Scholar
  25. Grossman, J. G., Hasnain, S. S., Yousafzai, F. K., Smith, B. E., and Eady, R. R. (1997). The first glimpse of a complex of nitrogenase component proteins by solution X-ray scattering: Conformation of the electron transfer transition state complex of Klebsiella pneumoniae nitrogenase. J. Mol Biol., 266, 642–648.CrossRefGoogle Scholar
  26. Grossman, J. G., Hasnain, S. S., Yousafzai, F. K., Smith, B. E., Eady, R. R., Schindelin, H., et al. (1999). Comparing crystallographic and solution structures of nitrogenase complexes. Acta Crystallogr. D, 55(Pt 4),121–122.CrossRefGoogle Scholar
  27. Hawkes, T. R., and Smith, B. E. (1983). Purification and characterization of the inactive MoFe protein (NifB-Kpl) of the nitrogenase from nifB mutants of Klebsiella pneumoniae. Biochem. J., 209, 43–50.Google Scholar
  28. Higuchi, Y., Yagi, T., and Yasuoka, N. (1997). Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure, 5, 1671–1680.CrossRefGoogle Scholar
  29. Holland, D., Zilberstein, A., Zamir, A., and Sussman, J. L. (1987). A quantitative approach to sequence comparisons of nitrogenase MoFe protein alpha- and beta-subunits including the newly sequenced nifK gene from Klebsiella pneumoniae. Biochem. J., 247, 277–285.Google Scholar
  30. Howard, J. B., and Rees, D. C. (1994). Nitrogenase: A nucleotide-dependent molecular switch. Annu. Rev. Biochem., 63, 235–264.CrossRefGoogle Scholar
  31. Howard, J. B., and Rees, D. C. (1996). Structural basis of biological nitrogen fixation. Chem. Rev., 96, 2965–2982.CrossRefGoogle Scholar
  32. Imperial, J., Shah, V. K., Ugalde, R. A., Ludden, P. W., and Brill, W. J. (1987). Iron-molybdenum cofactor synthesis in Azotobacter vinelandii nif mutants. J. Bacteriol., 169, 1784–1786.Google Scholar
  33. Jang, S. B., Seefeldt, L. C, and Peters, J. W. (2000a). Insights into nucleotide signal transduction in nitrogenase: Structure of an iron protein with MgADP bound. Biochemistry, 39, 14745–14752.CrossRefGoogle Scholar
  34. Jang, S. B., Seefeldt, L. C, and Peters, J. W. (2000b). Modulating the midpoint potential of the [4Fe-4S] cluster of the nitrogenase Fe protein. Biochemistry, 39, 641–648.CrossRefGoogle Scholar
  35. Kent, H. M., Baines, M., Gormal, C, Smith, B. E. and Buck, M. (1990). Analysis of site-directed mutations in the alpha- and beta-subunits of Klebsiella pneumoniae nitrogenase. Mol. Microbiol., 4, 1497–1504.CrossRefGoogle Scholar
  36. Kent, H. M, Loannidis, I., Gormal, C, Smith, B. E., and Buck, M. (1989). Site-directed mutagenesis of the Klebsiella pneumoniae nitrogenase. Effects of modifying conserved cysteine residues in the alpha-and beta-subunits. Biochem. J., 264, 257–264.Google Scholar
  37. Kim, J., and Rees, D. C. (1992a). Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature, 360, 553–560.CrossRefGoogle Scholar
  38. Kim, J., and Rees, D. C. (1992b). Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science, 257, 1677–1682.CrossRefGoogle Scholar
  39. Kim, J., and Rees, D. C. (1994). Nitrogenase and biological nitrogen fixation. Biochemistry, 33, 389–397.CrossRefGoogle Scholar
  40. Koonin, E. V. (1993). A superfamily of ATPases with diverse functions containing either classical or deviant ATP-binding motif. J. Mol. Biol., 229, 1165–1174.CrossRefGoogle Scholar
  41. Lammers, P. J., and Haselkorn, R. (1983). Sequence of the nifD gene coding for the alpha-subunit of dinitrogenase from the cyanobacterium Anabaena. Proc. Natl. Acad. Sci. U.S.A., 80, 4723–4727.CrossRefGoogle Scholar
  42. Langen, R., Jensen, G. M., Jacob, U., Stephens, P. J., and Warshel, A. (1992). Protein control of iron-sulfur cluster redox potentials. J. Biol. Chem., 267, 25625–25627.Google Scholar
  43. Lanzilotta, W. N., and Seefeldt, L. C. (1996). Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Biochemistry, 35, 16770–16776.CrossRefGoogle Scholar
  44. Lawson, D. M., and Smith, B. E. (2002). Molybdenum nitrogenases: A crystallographic and mechanistic view. Met. Ions Biol. Syst, 39, 75–119.Google Scholar
  45. Lovell, T, Li, J., Liu, T, Case, D. A., and Noodleman, L. (2001). FeMo cofactor of nitrogenase: A density functional study of states MN, Mox, MR, and M1. J. Am. Chem. Soc., 123, 12392–12410.CrossRefGoogle Scholar
  46. May, H. D., Dean, D. R., and Newton, W. E. (1991). Altered nitrogenase MoFe proteins from Azotobacter vinelandii. Analysis of MoFe proteins having amino acid substitutions for the conserved cysteine residues within the beta-subunit. Biochem. J., 277,457–464.Google Scholar
  47. Mayer, S. M., Lawson, D. M., Gormal, C. A., Roe, S. M., and Smith, B. E. (1999). New insights into structure-function relationships in nitrogenase: A 1.6 A resolution x-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. J. Mol. Biol., 292, 871–891.CrossRefGoogle Scholar
  48. Mayer, S. M., Niehaus, W. G., and Dean, D. R. (2002). Reduction of short chain alkynes by a nitrogenase alpha-70Ala-substituted MoFe protein. J. Chem. Soc, Dalton Trans., 5, 802–807.CrossRefGoogle Scholar
  49. Nicolet, Y., Lemon, B. J., Fontecilla-Camps, J. C, and Peters, J. W. (2000). A novel Fe-S cluster in Fe-only hydrogenases. Trends Biochem. Sci., 25, 138–143.CrossRefGoogle Scholar
  50. Nicolet, Y., Piras, C, Legrand, P., Hatchikian, C. E., and Fontecilla-Camps, J. C. (1999). Desulfovibrio desulfuricans iron hydrogenase: The structure shows unusual coordination to an active site Fe binuclear center. Structure Fold Des., 7, 13–23.CrossRefGoogle Scholar
  51. Pai, E. F., Krengel, U., Petsko, G. A., Goody, R. S., Kabsch, W., and Wittinghofer, A. (1990). Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBOJ., 9, 2351–2359.Google Scholar
  52. Paustian, T. D., Shah, V. K., and Roberts, G. P. (1990). Apodinitrogenase: purification, association w ith a 20-kilodalton pr otein, and ac tivation b y the iro n-molybdenum cofac tor in the absence of di nitrogenase re ductase. Biochem istry, 29, 3515–3522.CrossRefGoogle Scholar
  53. Peters, J. W., Fisher, K., and Dean, D. R. (1995). Nitrogenase structure and function: A biochemical-genetic perspective. Annu. Rev. Microbiol., 49, 335–366.CrossRefGoogle Scholar
  54. Peters, J. W., Lanzilotta, W. N., Lemon, B. J., and Seefeldt, L. C. (1998). X-ray crystal structure of Fe- only hydrogenase (Cpl) from Clostridiumpasteurianum to 1.8 A resolution. Science, 282, 1853–1858.CrossRefGoogle Scholar
  55. Peters, J. W., Stowell, M. H., Soltis, S. M., Finnegan, M. G., Johnson, M. K., and Rees, D. C. (1997). Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry,36, 1181–1187.CrossRefGoogle Scholar
  56. Rees, D. C. (2002). Great metalloclusters in enzymology. Annu. Rev. Biochem., 71, 221–246.CrossRefGoogle Scholar
  57. Rees, D. C, and Howard, J. B. (1999). Structural bioenergetics and energy transduction mechanisms. J. Mol Biol., 293, 343–350.CrossRefGoogle Scholar
  58. Rees, D. C., and Howard, J. B. (2000). Nitrogenase: standing at the crossroads. Curr. Opin. Chem. Biol., 4, 559–566.CrossRefGoogle Scholar
  59. Renner, K. A., and Howard, J. B. (1996). Aluminum fluoride inhibition of nitrogenase: Stabilization of a nucleotide.Fe-protein.MoFe-protein complex. Biochemistry, 35, 5353–5358.CrossRefGoogle Scholar
  60. Robinson, A. C., Burgess, B. K., and Dean, D. R. (1986). Activity, reconstitution, and accumulation of nitrogenase components in Azotobacter vinelandii mutant strains containing defined deletions within the nitrogenase structural gene cluster. J. Bacteriol., 166, 180–186.Google Scholar
  61. Robinson, A. C, Chun, T. W., Li, J. G., and Burgess, B. K. (1989). Iron-molybdenum cofactor insertion into the apo-MoFe protein of nitrogenase involves the iron protein-MgATP complex. J. Biol. Chem., 264, 10088–10095.Google Scholar
  62. Robinson, A. C., Dean, D. R., and Burgess, B. K. (1987). Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. J. Biol. Chem., 262, 14327–14332.Google Scholar
  63. Robson, R. L. (1984). Identification of possible adenine nucleotide-binding sites in nitrogenase Fe- and MoFe-proteins by amino acid sequence comparison. FEBSLett., 173, 394–398.CrossRefGoogle Scholar
  64. Ryle, M. J., and Seefeldt, L. C. (1996). Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: Formation of a conformation resembling the MgATP-bound state by protein engineering. Biochemistry, 35, 4766–4775.CrossRefGoogle Scholar
  65. Schindelin, H., Kisker, C., Schlessman, J. L., Howard, J. B., and Rees, D. C. (1997). Structure of ADP x AIF4(-)-stabilized nitrogenase complex & implications for signal transduction. Nature, 387, 370–376.CrossRefGoogle Scholar
  66. Schlessman, J. L., Woo, D., Joshua-Tor, L., Howard, J. B., and Rees, D. C. (1998). Conformational variability in structures of the nitrogenase iron proteins from Azotobacter vinelandii and Clostridium pasteurianum. J. Mol Biol., 280, 669–685.CrossRefGoogle Scholar
  67. Schmid, B., Ribbe, M. W., Einsle, O., Yoshida, M., Thomas, L. M., Dean, D. R.,et al. (2002). Structure of a cofactor-deficient nitrogenase MoFe protein. Science, 296, 352–356.CrossRefGoogle Scholar
  68. Schulz, G. E. (1992). Binding of nucleotides by proteins. Curr. Opin. Struct. Biol., 2, 61–67.CrossRefGoogle Scholar
  69. Scott, D. J., Dean, D. R., and Newton, W. E. (1992). Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an a-subunit FeMo cofactor-binding domain. J. Biol. Chem., 267, 20002–20010.Google Scholar
  70. Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E., and Dean, D. R. (1990). Role for the nitrogenase MoFe protein a-subunit in FeMo-cofactor binding and catalysis. Nature, 343, 188–190.CrossRefGoogle Scholar
  71. Sellmann, D., Fursattel, A., and Sutter, J. (2000). The nitrogenase catalyzed N2 dependent HD formation: a model reaction and its significance for the FeMoco function. Coord. Chem. Rev., 200, 545–561.CrossRefGoogle Scholar
  72. Sellmann, D., and Sutter, J. (1996). Elementary reactions, structure-function relationships, and the potential relevance of low molecular weight metal-sulfur ligand complexes to biological N2 fixation. J. Biol Inorg. Chem., 1, 587–593.CrossRefGoogle Scholar
  73. Siegbahn, P. E. M., Westerberg, J., Svensson, M., and Crabtree, R. H. (1998). Nitrogen fixation by nitrogenases: A quantum chemical study. J. Phys. Chem. B, 102, 1615–1623.CrossRefGoogle Scholar
  74. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994). GTPase mechanism of G proteins from the 1.7 A crystal structure of transducin alpha-GDP-AIF-4. Nature, 372, 276–279.CrossRefGoogle Scholar
  75. Story, R. M., and Steitz, T. A. (1992). Structure of the recA-ADP complex. Nature, 355, 374–376.CrossRefGoogle Scholar
  76. Story, R. M., Weber, I. T., and Steitz, T. A. (1992). The structure of the E. coli recA protein monomer and polymer. Nature, 355, 318–325.CrossRefGoogle Scholar
  77. Thony, B., Kaluza, K., and Hennecke, H. (1985). Structural and functional homology between the a and (3 subunits of the nitrogenase MoFe protein as revealed by sequencing the Rhizobium japonicum nifkgene. Mol Gen. Genet., 198, 441–448.CrossRefGoogle Scholar
  78. Tong, L. A., de Vos, A. M., Milburn, M. V., and Kim, S. H. (1991). Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. J. Mol. Biol., 2/7,503–516.CrossRefGoogle Scholar
  79. Vetter, I. R., and Wittinghofer, A. (2001). The guanine nucleotide-binding switch in three dimensions. Science, 294, 1299–1304.CrossRefGoogle Scholar
  80. Volbeda, A., Charon, M. H., Piras, C, Hatchikian, E. C, Frey, M., and Fontecilla-Camps, J. C. (1995). Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature, 373, 580–587.CrossRefGoogle Scholar
  81. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982). Distantly related sequences in the a-and P-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBOJ., 1, 945–951.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • P. M. C. Benton
    • 1
  • J. W. Peters
    • 1
  1. 1.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA

Personalised recommendations