Skip to main content

Vanadium Nitrogenase

  • Chapter

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 1))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agar, J. N., Krebs, C, Frazzon, J., Huynh, B. H., Dean, D. R., and Johnson, M. K. (2000a). IscU as a scaffold for iron-sulfür cluster biosynthesis: Sequential assembly of [2Fe–2S] and [4Fe–4S] clusters in IscU. Biochemistry, 39, 7856–7862.

    Article  CAS  Google Scholar 

  • Agar, J. N., Zheng, L., Cash, V. L., Dean, D. R., and Johnson, M. K. (2000b). Role of the IscU protein in iron–sulfür cluster biosynthesis: IscS-mediated assembly of a [Fe2S2] cluster in IscU. J. Am. Chem.Soc, 722,2136–2137.

    Article  Google Scholar 

  • Allen, J. R., Chatterjee, R., Ludden, P. W., and Shah, V. K. (1995). Incorporation of iron and sulfür into the iron-molybdenum cofactor of dinitrogenase. J. Biol. Chem., 270, 26890–26896.

    Article  CAS  Google Scholar 

  • Allen, R. M., Homer, M. J., Chatterjee, R., Ludden, P. W., Roberts, G. P., and Shah, V. K. (1993). Dinitrogenase reductase- and MgATP-dependent maturation of apodinitrogenase from Azotobacter

    Google Scholar 

  • vinelandii. J. Biol. Chem., 268, 2361Q–21614.

    Google Scholar 

  • Arber, J. M, Dobson, B. R., Eady, R. R., Stevens, P., Hasnain, S. S., Garner, C. D., et al.(1987). Vanadium K-edge X-ray absorption spectrum of the VFe protein of the vanadium nitrogenase of Azotobacter chroococcum. Nature, 325, 372–374.

    Article  CAS  Google Scholar 

  • Beijerinck, J. H. (1901). Uber oligonitrophile mikroben. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. II, 7, 561–582.

    Google Scholar 

  • Bergstrom, J., Eady, R. R., and Thorneley, R. N. F. (1988). The vanadium- and molybdenum-containing nitrogenases of Azotobacter chroococcum. Biochem. J., 251, 165–169.

    CAS  Google Scholar 

  • Bishop, P. E., and Eady, R. R. (1985). Nitrogen fixation by a nifHDK deletion strain of Azotobacter vinelandii. In H. J. Evans, P. J. Bottomley, and W. E. Newton (Eds.), Nitrogen fixation research progress(pp. 622). Dordrecht, The Netherlands: Martinus Nijhoff Publishers.

    Google Scholar 

  • Bishop, P., and Premakumar, R. (1992). Alternative nitrogen fixation systems. In G. Stacey, R. H. Burris, and H. J. Evans (Eds.), Biological nitrogen fixation(pp. 736–762). Chapman & Hall: New York.

    Google Scholar 

  • Bishop, P. E., Jarlenski, D. M. L., and Hetherington, D. R. (1980). Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. USA, 77, 7342–7346.

    Article  CAS  Google Scholar 

  • Bishop, P. E., Jarlenski, D. M. L., and Hetherington, D. R. (1982). Expression of an alternative nitrogen fixation system in Azotobacter vinelandii. J. Bacteriol, 150, 1244–1251.

    CAS  Google Scholar 

  • Bishop, P. E., Premakumar, R., Dean, D. R., Jacobson, M. R., Chisnell, J. R., Rizzo, T. M., et al. (1986).

    Google Scholar 

  • Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science, 232, 92–94.

    Google Scholar 

  • Blanchard, C. Z., and Hales, B. J. (1996). Isolation of two forms of the nitrogenase VFe-protein from Azotobacter vinelandii. Biochemistry, 35, 472–478.

    Article  CAS  Google Scholar 

  • Bortels, H. (1929). Biokatalyse und reaktionsempfindickeit bei neideren und hoheren planzen. Angew. Bot, 77,285–332.

    Google Scholar 

  • Bortels, H. (1930). Molybdan als katalysator bei der biolischen stickstoffbindung. Arch. Microbiol, 1, 333–342.

    CAS  Google Scholar 

  • Bortels, H. (1936). Weitere untersuchungen uber die bedeutung von molybdan, vanadium, wolfram und andere erdaschenstoffe für stickstoffbindende und andere mikroorganismen. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. II, Abt, 95, 193–393.

    CAS  Google Scholar 

  • Brigle, K. E., Weiss, M. C, Newton, W. E., and Dean, D. R. (1987). Products of the iron-molybdenum cofactor–specific biosynthesis genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum–iron protein genes, nifD and ni/K. J. Bacteriol., 169, 1547–1553.

    CAS  Google Scholar 

  • Buikema, W. J., Klingensmith, J. A., Gibbons, S. L., and Ausubel, F. M. (1987). Conservation of structure and location of Rhizobium meliloti and Klebsiella pneumoniae nifB genes. J. Bacteriol, 169, 1120–1126.

    CAS  Google Scholar 

  • Burgess, B. K., Gavini, N., Ma, L., and Watt, G. (1994). Purification and characterization of a FeMo cofactor–deficient MoFe protein. Biochemistry, 33, 11842–11849.

    Article  Google Scholar 

  • Burgess, B. K., and Lowe, D. J. (1996). Mechanism of molybdenum nitrogenase. Chem. Rev., 96, 2983–3011.

    Article  CAS  Google Scholar 

  • Cameron, L. M., and Hales, B. J. (1996). Unusual effect of CO on C2H2 reduction by V-nitrogenase from Azotobacter vinelandii. J. Am. Chem. Soc., 118, 279–280.

    Article  CAS  Google Scholar 

  • Chan, J. M., Christiansen, J., Dean, D. R., and Seefeldt, L. C. (1999). Spectroscopic evidence for changes in the redox state of the nitrogenase P-Cluster during turnover. Biochemistry, 38, 5779–5785.

    Article  CAS  Google Scholar 

  • Chen, J., Christiansen, J., Tittsworth, R. C, Hales, B. J., George, S. J., Coucouvanis, D., et al.(1993). Iron EXAFS of Azotobacter vinelandii nitrogenase Mo-Fe and V-Fe proteins. J. Am. Chem. Soc, 775,5509–5515.

    Article  Google Scholar 

  • Chisnell, J. R., and Bishop, P. E. (1985). Partial purification of an alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. In H. J. Evans, P. J. Bottomley and W. E. Newton (Eds.), Nitrogen fixation research progress(pp. 623). Dordrecht, The Netheralnds: Martinus Nijhoff Publishers.

    Google Scholar 

  • Chisnell, J. R., Premakumar, R., and Bishop, P. E. (1988). Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J. Bacterioi, 170, 27–33.

    CAS  Google Scholar 

  • Christiansen, J., Goodwin, P. J., Lanzilotta, W. N., Seefeldt, L. C, and Dean, D. R. (1998). Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a A?//B–deletion mutant of Azotobacter vinelandii. Biochemistry, 37, 12611–12623.

    Article  CAS  Google Scholar 

  • Christiansen, J., Tittsworth, R. C, Hales, B. J., and Cramer, S. P. (1995). Fe and Mo EXAFS of Azotobacter vinelandii nitrogenase in paritally oxidized and singly reduced forms. J. Am. Chem.Soc, 117, 10017–10024.

    Google Scholar 

  • Davis, R., Lehman, L., Petrovich, R., Shah, V. K., Roberts, G. P., and Ludden, P. W. (1996). Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospir ilium rubrum.J. Bacterioi, 178, 1145–1450.

    Google Scholar 

  • Dean, D. R., and Jacobson, M. R. (1992). Biochemical genetics of nitrogenase. In G. Stacey, R. H. Burris, and H. J. Evans (Eds.), Biological nitrogen fixation(pp. 763–834). Chapman and Hall: New York.

    Google Scholar 

  • Dilworth, M. J., and Eady, R. R. (1991). Hydrazine is a product of dinitrogen reduction by the vanadium- nitrogenase from Azotobacter chroococcum. Biochem. J., 277, 465–468.

    CAS  Google Scholar 

  • Dilworth, M. J., Eady, R. R., and Eldridge, M. E. (1988). The vanadium nitrogenase of Azotobacter chroococcum — Reduction of acetylene and ethylene to ethane. Biochem. J., 249, 745–751.

    CAS  Google Scholar 

  • Dilworth, M. J., Eldridge, M. E., and Eady, R. R. (1992). Correction for creatine interference with the direct indophenol measurement of NH3 in steady-state nitrogenase assays. Anal. Biochem., 207, 6–10.

    Article  CAS  Google Scholar 

  • Dilworth, M. J., Eldridge, M. E., and Eady, R. R. (1993). The molybdenum and vanadium nitrogenases of Azotobacter chroococcum: Effect of elevated temperature on N2 reduction. Biochem. J.,289, 395–400.

    CAS  Google Scholar 

  • Dunham, W. R., Hagen, W. R., Braaksma, A., Haaker, H., Gheller, S., Newton, W. E., et al. (1985). Mossbauer and EPR studies on nitrogenase. In H. J. Evans, P. J. Bottomley, and W. E. Newton (Eds.), Nitrogen fixation research progress(pp. 591–596). Dordrecht, the Netherlands: Martinus Nijhoff.

    Chapter  Google Scholar 

  • Eady, R. R. (1996). Structure–function relationships of alternative nitrogenases. Chem. Rev., 96, 3013–3030.

    Article  CAS  Google Scholar 

  • Eady, R. R., Pau, R., Lowe, D. J., and Luque, F. J. (1990). Vanadium nitrogenase of Azotobacter. In P.M. Gresshoff, L. E. Roth, G. Stacey, and W. E. Newton (Eds.), Nitrogen fixation: Achievements and objectives(pp. 125–133). New York: Chapman and Hall.

    Google Scholar 

  • Eady, R. R., Robson, R. L., Richarson, T. H., Miller, R. W., and Hawkins, M. (1987). The vanadium nitrogenase of Azotobacter chroococcum: Purification and properties of the VFe protein. Biochem. J.,244, 197–207.

    CAS  Google Scholar 

  • Filler, W. A., Kemp, R. M., Ng, J. C, Hawkes, T. R., Dixon, R. A., and Smith, B. E. (1986). The nifli gene product is required for the synthesis or stability of the iron–molybdenum cofactor of nitrogenase from Klebsiella pneumoniae. Eur. J. Biochem., 160, 37–311.

    Article  Google Scholar 

  • Fu, W., Jack, R. F., Morgan, V., Dean, D. R., and Johnson, M. K. (1994). nifU gene product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe–2S] clusters. Biochemistry, 33, 13455–13463.

    Article  CAS  Google Scholar 

  • Gavini, N., and Burgess, B. K. (1992). FeMo cofactor synthesis by a ni/H mutant with altered MgATP reactivity. J. Biol. Chem., 267, 21179–21186.

    CAS  Google Scholar 

  • George, G. N., Coyle, C. L., Hales, B. J., and Cramer, S. P. (1988). X–ray absorption of Azotobacter vinelandii vanadium nitrogenase. J. Am. Chem. Soc, 110, 4057–4059.

    Article  CAS  Google Scholar 

  • Goodwin, P. J., Agar, J. N., Roll, J. T., Roberts, G. P., Johnson, M. K., and Dean, D. R. (1998). The Azotobacter vinelandiii NifNE complex contains two identical [4Fe–4S] clusters. Biochemistry, 37, 10420–10428.

    Google Scholar 

  • Hales, B. J., Case, E. E., and Langosch, D. (1985). Nitrogen fixation in nifHDK deletion strains of Azotobacter vinelandii. In H. J. Evans, P. J. Bottomley, and W. E. Newton (Eds.), Nitrogen fixation research progress(pp. 612). Dordrecht, The Netherlands: Martinus Nijhoff Publishers.

    Google Scholar 

  • Hales, B. J., Case, E. E., Morningstar, J. E., Dzeda, M. F., and Mauterer, L. A. (1986). Isolation of a new vanadium–containing nitrogenase from Azotobacter vinelandii. Biochemistry, 25, 7251–7255.

    Article  CAS  Google Scholar 

  • Hales, B. J., True, A. E., and Hoffman, B. M. (1989). Detection of a new signal in the EPR spectrum of vanadium nitrogenase from Azotobacter vinelandii. J. Am. Chem. Soc, 111, 8519–8520.

    Article  CAS  Google Scholar 

  • Hawkes, T. R., and Smith, B. E. (1983). Purification and characterization of the inactive MoFe protein (NifBKpl) of the nitrogenase from nifB mutants ofKlebsiella pneumoniae. Biochem. J., 209, 43–50.

    CAS  Google Scholar 

  • Homer, M. J., Paustian, T. D., Shah, V. K., and Roberts, G. P. (1993). The nifY product of Klebsiella pneumoniae is associated with apodinitrogenase and dissociates upon activation with the iron-molybdenum cofactor. J. Bacteriol, 175, 4907–4910.

    CAS  Google Scholar 

  • Huynh, B. H., Henzl, M. T., Christner, J. A., Zimmermann, R., Orme-Johnson, W. H., and Miinck, E. (1980). Mossbauer studies of the MoFe protein from Clostridium pasteurianum W5. Biochim. Biophys. Acta, 623, 124–138.

    Article  CAS  Google Scholar 

  • Imperial, J., Hoover, T. R., Madden, M. S., Ludden, P. W., and Shah, V. K. (1989). Substrate reduction properties of dinitrogenase activated in vitro are dependent upon the presence of homocitrate or its analogues during iron-molybdenum cofactor synthesis. Biochemistry, 28, 7796–7799.

    Article  CAS  Google Scholar 

  • Johnson, M. K., Thomson, A. J., Robinson, A. E., and Smith, B. E. (1981). Characterization of the paramagnetic centres of the molybdenum-iron protein of nitrogenase from Klebsiella pneumoniae

    Google Scholar 

  • using low-temperature magnetic circular dichroism spectroscopy. Biochim. Biophys. Acta, 671, 61–70.

    Google Scholar 

  • Kennedy, C, and Dean, D. R. (1992). The nifU, nifS and nifV gene products are required for activity of all three nitrogenases in Azotobacter vinelandii. Mol. Gen. Genet., 231, 494–498.

    Article  CAS  Google Scholar 

  • Kennedy, C, Robson, R., Jones, R., Woodley, P., Evans, D., Bishop, P., E., et al.(1985). Genetic and physical characterisation of nif and ntr genes in Azotobacter chroococcum and A. vinelandii. In H. J. Evans, P. J. Bottomley, and W. E. Newton (Eds.), Nitrogen fixation research progress(pp. 469–476). Dordrecht, The Netherlands: Martinus Nijhoff Publishers.

    Chapter  Google Scholar 

  • Krahn, E., Weiss, J. R., Krockel, M., Groppe, J., Henkel, G., Cramer, S. P., et al.(2002). The Fe-only nitrogenase from Rhodobacter capsulatus: Identification of the cofactor, an unusual high-nuclearity iron-sulfür cluster, by Fe K-edge EXAFS and 57Fe Mossbauer spectroscopy. J. Biol. Inorg. Chem., 7,37–45.

    Article  CAS  Google Scholar 

  • Lacourciere, G. M., and Stadtman, T. C. (1998). The NifS protein can function as a selenide delivery protein in the biosynthesis of selenophosphate. J. Biol. Chem., 273, 30921–30926.

    Article  CAS  Google Scholar 

  • Lowe, D. J., and Thorneley, R. N. F. (1984a). The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of H2 formation. Biochem. J., 224, 877–886.

    CAS  Google Scholar 

  • Lowe, D. J., and Thorneley, R. N. F. (1984b). The mechanism of Klebsiella pneumoniae nitrogenase action. The determination of rate constants for the simulation of the kinetics of N2 reduction and H2 evolution. Biochem. J., 224, 895–901.

    CAS  Google Scholar 

  • Moore, V. G., Tittsworth, R. C, and Hales, B. J. (1994). Construction and characterization of hybrid component 1 from V-nitrogenase containing FeMo cofactor. J. Am. Chem. Soc, 116, 12101–12102.

    Article  CAS  Google Scholar 

  • Morningstar, J. E., and Hales, B. J. (1987). Electron paramagnetic resonance study of the vanadium-iron protein of nitrogenase from Azotobacter vinelandii. J. Am. Chem. Soc, 109, 6854–6855.

    Article  CAS  Google Scholar 

  • Morningstar, J. E., Johnson, M. K., Case, E. E., and Hales, B. J. (1987). Characterization of the metal clusters in the nitrogenase molybdenum-iron and vanadium–iron proteins of Azotobacter vinelandii using magnetic circular dichroism spectroscopy. Biochemistry, 26, 1795–1800.

    Article  CAS  Google Scholar 

  • Miiller, A., Schneider, K., Gollan, U., Krahn, E., and Drottboom, M. (1995). Characterization of the “iron only” nitrogenase from Rhodobacter capsulatus. J. Inorg. Biochem., 59, 551.

    Article  Google Scholar 

  • Miiller, A., Schneider, K., Kniittel, K., and Hagen, W. R. (1992). EPR spectroscopic characterization of an ‘iron only’ nitrogenase –5 = 3/2 spectrum of component 1 isolated from Rhodobacter capsulatus. FEBSLett, 303,36–40.

    Article  Google Scholar 

  • Münck, E. (2000). Aspects of 57Fe Mossbauer spectroscopy. In L. Que, Jr. (Ed.), Physical methods in bioinorganic chemistry(pp. 287–320). Sausalito: University Science Books.

    Google Scholar 

  • Miinck, E., Rhodes, H., Orme-Johnson, W. H., Davis, L. C, Brill, W. J., and Shah, V. K. (1975). Nitrogenase. VIII. Mossbauer and EPR spectroscopy. The MoFe protein component from Azotobacter vinelandii OP. Biochim. Biophys. Acta, 400, 32–53.

    Article  Google Scholar 

  • Pierik, A. J., Wassink, H, Haaker, H., and Hagen, W. R. (1993). Redox properties and EPR spectroscopy of the P clusters of Azotobacter vinelandii MoFe protein. Eur. J. Biochem., 2/2, 51–61.

    Article  Google Scholar 

  • Rangaraj, P., Ruttimann-Johnson, C, Shah, V. K., and Ludden, P. W. (2000). Biosynthesis of the iron-molybdenum and iron-vanadium cofactors of the nif -and w?/-encoded nitrogenases. In E. W. Triplett (Ed.), Prokaryotic nitrogen fixation: A model system for analysis of a biological process (pp. 55–79). Wymondham, UK: Horizon Scientific Press.

    Google Scholar 

  • Ravi, N., Moore, V., Lloyd, S., Hales, B. J., and Huynh, B. H. (1994). Mossbauer characterization of the metal clusters in Azotobacter vinelandii nitrogenase VFe protein. J. Biol. Chem., 269, 20920–20924.

    CAS  Google Scholar 

  • Rawlings, J., Shah, V. K., Chisnell, J. R., Brill, W. J., Zimmermann, R., Miinck, E., et al.(1978). Novel metal cluster in the iron-molybdenum cofactor of nitrogenase. J. Biol. Chem., 253, 1001–1004.

    CAS  Google Scholar 

  • Ribbe, M., Gadkari, D., and Meyer, O. (1997). N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum-dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J. Biol. Chem., 272, 26627–26633.

    Article  CAS  Google Scholar 

  • Roberts, G. P., MacNeil, T., MacNeil, D., and Brill, W. J. (1978). Regulation and characterization of protein products coded by the nif (nitrogen fixation) genes of Klebsiella pneumoniae. J. Bacteriol, 136, 267–279.

    Google Scholar 

  • Robinson, A. C, Chun, T. W., Li, J.-G., and Burgess, B. K. (1989). Iron–molybdenum cofactor insertion into the apo-MoFe protein of nitrogenase involves the iron protein-MgATP complex. J. Biol. Chem., 264, 10088–10095.

    CAS  Google Scholar 

  • Robinson, A. C, Dean, D. R., and Burgess, B. K. (1987). Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. J. Biol. Chem., 262, 14327–14332.

    CAS  Google Scholar 

  • Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., and Postgate, J. R. (1986). The alternative nitrogenase of Azotobacter chroococcum is a vandium enzyme. Nature, 322, 388–390.

    Article  CAS  Google Scholar 

  • Riittimann-Johnson, C, Rangaraj, P., Shah, V. K., and Ludden, P. W. (2001). Requirement of homocitrate for the transfer of a 49V–labeled precursor of the iron–vanadium cofactor from VnfX to nif-apodinitrogenase. J. Biol. Chem., 276,4522–4526.

    Article  Google Scholar 

  • Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S., and Miiller, A. (1997). Comperative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. Eur. J. Biochem., 244, 789–800.

    Article  CAS  Google Scholar 

  • Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E., and Dean, D. R. (1990). Role for the nitrogenase MoFe protein a-subunit in FeMo–cofactor binding and catalysis. Nature, 343, 188–190.

    Article  CAS  Google Scholar 

  • Scott, R. (2000). X-ray absorption spectroscopy. In L. Que, Jr. (Ed.), Physical methods in bioinorganic chemistry(pp. 465–504). Sausalito: University Science Books.

    Google Scholar 

  • Shah, V. K., Allen, J. R., Spangler, N. J., and Ludden, P. W. (1994). In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Purification and characterization of NifB cofactor, the product of the the NifB protein. J. Biol. Chem., 269, 1154–1158.

    CAS  Google Scholar 

  • Shah, V. K., Hoover, T. R., Imperial, J., Paustian, T. D., Roberts, G. P., and Ludden, P. W. (1988). Role of w/gene products and homocitrate in the biosynthesis of iron–molybdenum cofactor. In H. Bothe, F. J. de Bruijn, and W. E. Newton (Eds.), Nitrogen fixation: Hundred years after(pp. 115–220). Stuttgart: Gustav Fischer.

    Google Scholar 

  • Shah, V. K., Ranagaraj, P., Chatterjee, R., Allen, R. M., Roll, J. T., Roberts, G. P., et al(1998). Role of NifX and other nif proteins for in vitro biosynthesis of the iron–molybdenum cofactor of nitrogenase. J. Bacteriol, 181, 2792–2801.

    Google Scholar 

  • Siemann, S., Schneider, K., Drottboom, M., and Miiller, A. (2002). The Fe-only nitrogenase and the Mo nitrogenase from Rhodobacter capsulatus. A comparitive study on the redox properties of the metal clusters present in the dinitrogenase components. Eur. J. Biochem., 269, 1650–1661.

    Article  CAS  Google Scholar 

  • Smith, A. D., Agar, J. N., Johnson, K. A., Frazzon, J., Amster, I. J., Dean, D. R., et al.(2001). Sulfür transfer from IscS to IscU: The first step in iron-sulfür cluster biosynthesis. J. Am. Chem. Soc, 123, 11103–11104.

    Article  CAS  Google Scholar 

  • Smith, B. E., and Eady, R. R. (1992). Metalloclusters of the nitrogenases. Eur. J. Biochem., 205, 1–15.

    Article  CAS  Google Scholar 

  • Smith, B. E., Eady, R. R., Lowe, D. J., and Gormal, C. (1988). The vanadium–iron protein of vanadium nitrogenase from Azotobacter chroococcum contains an iron-vanadium cofactor. Biochem. J., 250,299–302.

    CAS  Google Scholar 

  • Smith, B. E., and Lang, G. (1974). Mossbauer spectroscopy of the nitrogenase proteins from Klebsiella pneumoniae. Biochem. J., 137, 169–180.

    CAS  Google Scholar 

  • Smith, B. E., O’Donnell, M. J., Lang, G., and Kevos, S. (1980). A Mossbauer spectroscopic investigation of the redox behaviour of the molybdenum-iron protein from Klebsiella pneumoniae nitrogenase. Biochem. J., 191, 449–455.

    CAS  Google Scholar 

  • Surerus, K. K., Hendrich, M. P., Christie, P. D., Rottgardt, D., Orme-Johnson, W. H., and Münck, E. (1992). Mossbauer and integer-spin EPR of the oxidized P-lusters of nitrogenase: Pox is a non-Kramers system with a nearly degenerate ground doublet. J. Am. Chem. Soc, 114, 8579–8590.

    Article  CAS  Google Scholar 

  • Thomson, A. J., and Johnson, M. K. (1980). Magnetization curves of haemoproteins measured by low-temperature magnetic-circular-dichroism spectroscopy. Biochem. J., 191, 411–420.

    CAS  Google Scholar 

  • Thorneley, R. N. F., Bergstrom, N. H. J., Eady, R. R., and Lowe, D. J. (1989). Vanadium nitrogenase of Azotobacter chroococum: MgATP-dependent electron transfer within the protein complex. Biochem. J., 271, 789–795.

    Google Scholar 

  • Thorneley, R. N. F., and Deistung, J. (1986). Electron transfer to nitrogenase. Biochem. J., 239, 69–75.

    Google Scholar 

  • Thorneley, R. N. F., Deistung, J., Cannon, F. C, Cannon, M. C, and Hill, S. (1985). Electron transfer to nitrogenase in Klebsiella pneumoniae. Biochem. J., 231, 743–753.

    Google Scholar 

  • Thorneley, R. N. F., and Lowe, D. J. (1984a). The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of an enzyme-bound intermediate in N2 reduction and of NH3 formation. Biochem. J., 224, 887–894.

    CAS  Google Scholar 

  • Thorneley, R. N. F., and Lowe, D. J. (1984b). The mechanism of Klebsiella pneumoniae nitrogenase action. Simulation of the dependences of H2 -evolution rate on component–protein concentration and ratio and sodium dithionite concentration. Biochem. J., 224, 903–909.

    CAS  Google Scholar 

  • Thorneley, R. N. F., and Lowe, D. J. (1985). Kinetics and mechanism of the nitrogenase enzyme systems. In T. G. Spiro (Ed.), Molybdenum enzymes(Vol. 7, pp. 221–284). New York: John Wiley & Sons.

    Google Scholar 

  • Tittsworth, R. C, and Hales, B. J. (1993). Detection of EPR signals assigned to the 1-equiv-oxidized P-clusters of the nitrogenase MoFe–protein from Azotobacter vinelandii. J. Am. Chem. Soc, 115, 9763–9767.

    Article  CAS  Google Scholar 

  • Tittsworth, R. C, and Hales, B. J. (1996). Oxidative titration of the nitrogenase VFe–protein from Azotobacter vinelandii: An example of redox gated electron flow. Biochemistry, 35, 479–489.

    Article  CAS  Google Scholar 

  • White, T. C, Harris, G. S., and Orme-Johnson, W. H. (1992). Electrophoretic studies on the assembly of the nitrogenase molybdenum-iron protein from the Klebsiella pneumoniae nifD and nifK gene products. J. Biol. Chem., 267, 24007–24016.

    CAS  Google Scholar 

  • Wolfinger, E. D., and Bishop, P. E. (1991). Nucleotide sequence and mutational analysis of the vnfENX region of Azotobacter vinelandii. J. Bacteriol, 173, 7565–7572.

    CAS  Google Scholar 

  • Wolle, D., Dean, D. R., and Howard, J. B. (1992a). Nucleotide-iron-sulfür cluster signal transduction in the nitrogenase iron-protein: The role of Asp125. Science, 258, 992–995.

    Article  CAS  Google Scholar 

  • Wolle, D., Kim, C, Dean, D., and Howard, J. B. (1992b). Ionic interactions in the nitrogenase complex. J. Biol. Chem., 267, 3667–3673.

    CAS  Google Scholar 

  • Yoo, S. J., Angove, H. C, Papafthymiou, V., Burgess, B. K., and Münck, E. (2000). Mossbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective 57Fe enrichment of the M-centers. J. Am. Chem. Soc, 122, 4926–4936.

    Article  CAS  Google Scholar 

  • Zheng, L., White, R. H., and Dean, D. R. (1997). Purification of the Azotobacter vinelandii m/V-encoded homocitrate synthase. J. Bacteriol, 179, 5963–5966.

    CAS  Google Scholar 

  • Zimmermann, R., Münck, E., Brill, W. J., Shah, V. K., Henzl, M. T., Rawlings, J., et al. (1978). Nitrogenase X: Mossbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter vinelandii OP. Biochim. Biophys. Acta, 536, 185–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hales, B.J. (2004). Vanadium Nitrogenase. In: Smith, B.E., Richards, R.L., Newton, W.E. (eds) Catalysts for Nitrogen Fixation. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3611-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-3611-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6675-6

  • Online ISBN: 978-1-4020-3611-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics