Skip to main content

Physiology Of Root-Nodule Bacteria

  • Chapter
Nitrogen-fixing Leguminous Symbioses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar, J. M. M., Ashby, A. M., Richards, A. J. M., Loake, G. J., Watson, M. D., and Shaw, C. H. (1988). Chemotaxis of Rhizobium leguminosarumbiovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J. Gen. Microbiol., 134, 2741-2746.

    Google Scholar 

  • Alexandre, G., and Zhulin, I. B. (2001). More than one way to sense chemicals. J. Bacteriol., 183, 4681-4686.

    PubMed  CAS  Google Scholar 

  • Alexandre, G., Greer-Phillips, S., and Zhulin, I. B. (2004). Ecological role of energy taxis in microorganisms. FEMS Microbiol. Rev., 28, 113-126.

    PubMed  CAS  Google Scholar 

  • Alfano, J. R., and Kahn, M. L. (1993). Isolation and characterization of a gene coding for a novel aspartate aminotransferase from Rhizobium meliloti. J. Bacteriol., 175, 4186-4196.

    PubMed  CAS  Google Scholar 

  • Allaway, D., Lodwig, E., Crompton, L. A., Wood, M., Parsons, R., et al. (2000). Identification of alanine dehydrogenase and its role in mixed secretion of ammonium and alanine by pea bacteroids. Mol. Microbiol., 36, 508-515.

    PubMed  CAS  Google Scholar 

  • Allaway, D., Schofield, N. A., Leonard, M. E., Gilardoni, L., Finan, T. M., and Poole, P. S. (2001). Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environ. Microbiol., 3, 397-406.

    PubMed  CAS  Google Scholar 

  • Ames, P., and Bergman, K. (1981). Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J. Bacteriol., 148, 728-729.

    PubMed  CAS  Google Scholar 

  • Ampe, F., Kiss, E., Sabourdy, F., and Batut, J. (2003a). Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol., 4, R15.

    Google Scholar 

  • An, J. H., Lee, H. Y., Ko, K. N., Kim, E. S., and Kim, Y. S. (2002). Symbiotic effects of Delta matB Rhizobium leguminosarum bv. trifolii mutant on clovers. Mol.Cells, 14, 261-266.

    CAS  Google Scholar 

  • Andrews, S. C., Robinson, A. K., and Rodriguez-Quinones, F. (2003). Bacterial iron homeostasis. FEMS Microbiol. Rev., 27, 215-237.

    PubMed  CAS  Google Scholar 

  • Aneja, P., and Charles, T. C. (1999). Poly-3-hydroxybutyrate degradation inRhizobium (Sinorhizobium) meliloti: Isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase. J. Bacteriol., 181, 849-857.

    Google Scholar 

  • Appels, M. A., and Haaker, H. (1991). Glutamate oxaloacetate transaminase in pea root nodules - participation in a malate/aspartate shuttle between plant and bacteroid. Plant Physiol., 95, 740-747.

    PubMed  CAS  Google Scholar 

  • Armitage, J. P., Gallagher, A., and Johnston, A. W. B. (1988). Comparison of the chemotactic behavior of Rhizobium leguminosarum with and without the nodulation plasmid. Mol. Microbiol., 2, 743-748.

    PubMed  CAS  Google Scholar 

  • Armitage, J. P., and Schmitt, R. (1997). Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti - variations on a theme? Microbiology, 143, 3671-3682.

    PubMed  CAS  Google Scholar 

  • Asha, H., and Gowrishankar, J. (1993). Regulation of kdp operon expression in Escherichia coli: evidence against turgor as signal for transcriptional control. J. Bacteriol., 175, 4528-4537.

    PubMed  CAS  Google Scholar 

  • Baginsky, C., Brito, B., Imperial, J., Palacios, J. M., and Ruiz-Argüeso, T. (2002). Diversity and evolution of hydrogenase systems in rhizobia. Appl. Environ. Microbiol., 68, 4915-4924.

    PubMed  CAS  Google Scholar 

  • Bahar, M., de Majnik, J., Wexler, M., Fry, J., Poole, P. S., and Murphy, P. J. (1998). A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway. Mol. Plant-Microbe Interact., 11, 1057-1068.

    PubMed  CAS  Google Scholar 

  • Ballen, K. G., Graham, P. H., Jones, R. K., and Bowers, J. H. (1998). Acidity and calcium interaction affecting cell envelope stability in Rhizobium. Can. J. Microbiol., 44, 582-587.

    CAS  Google Scholar 

  • Barker, M. M., Gaal, T., and Gourse, R. L. (2001a). Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J. Mol. Biol., 305, 689-702.

    CAS  Google Scholar 

  • Barker, M. M., Gaal, T., Josaitis, C. A., and Gourse, R. L. (2001b). Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol., 305, 673-688.

    CAS  Google Scholar 

  • Barloy-Hubler, F., Chéron, A., Hellégouarch, A., and Galibert, F. (2004). Smc01944, a secreted peroxidase induced by oxidative stresses in Sinorhizobium meliloti1021. Microbiology, 150, 657-664.

    PubMed  CAS  Google Scholar 

  • Barnett, M. J., Tolman, C. J., Fisher, R. F., and Long, S. R. (2004). A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc. Natl. Acad. Sci. USA, 101, 16636-16641.

    PubMed  CAS  Google Scholar 

  • Batut, J., Andersson, S. G. E., and O’Callaghan, D. (2004). The evolution of chronic infection strategies in the α -proteobacteria. Nature Revs. Microbiol., 2, 933-945.

    CAS  Google Scholar 

  • Becana, M., Dalton, D. A., Moran, J. F., Iturbe-Ormaetxe, I., Matamoros, M. A., and Rubio, M. C. (2000). Reactive oxygen species and antioxidants in legume nodules. Physiol. Plant., 109, 372-381.

    CAS  Google Scholar 

  • Becker, A., Bergès, H., Krol, E., Bruand, C., Rüberg, S., Capela, D., et al. (2004). Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol. Plant-Microbe Interact., 17, 292-303.

    PubMed  CAS  Google Scholar 

  • Belitsky, B., and Kari, C. (1982). Absence of accumulation of ppGpp and RNA during amino acid starvation in Rhizobium meliloti. J. Biol. Chem., 257, 4677-4679.

    PubMed  CAS  Google Scholar 

  • Bell, E. A. (2003). Nonprotein amino acids of plants: Significance in medicine, nutrition, and agriculture. J. Agric. Food Chem., 51, 2854-2865.

    PubMed  CAS  Google Scholar 

  • Benson, H. P., LeVier, K., and Guerinot, M. L. (2004). A dominant-negative fur mutation in Bradyrhizobium japonicum. J. Bacteriol., 186, 1409-1414.

    PubMed  CAS  Google Scholar 

  • Bergersen, F. J., and Turner, G. L. (1990). Bacteroids from soybean root nodules: Accumulation of poly-β -hydroxybutyrate during supply of malate and succinate in relation to N2 fixation in flow-chamber reactions. Proc. Roy. Soc. London,B, 240, 39-59.

    CAS  Google Scholar 

  • Bergersen, F. J., Peoples, M. B., and Turner, G. L. (1991). A role for poly-β -hydroxybutyrate in bacteroids of soybean root nodules. Proc. Roy. Soc. London,B, 245, 59-64.

    CAS  Google Scholar 

  • Bergersen, F. J., and Turner, G. L. (1993). Effects of concentrations of substrates supplied to N2-fixing soybean bacteroids in flow chamber reactions. Proc. Roy. Soc. London,B, 251, 95-102.

    CAS  Google Scholar 

  • Boivin, C., Camut, S., Malpica, C. A., Truchet, G., and Rosenberg, C. (1990). Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plant Cell, 2, 1157-1170.

    PubMed  CAS  Google Scholar 

  • Boivin, C., Barran, L. R., Malpica, C. A., and Rosenberg, C. (1991). Genetic analysis of a region of theRhizobium meliloti pSym plasmid specifying catabolism of trigonelline, a secondary metabolite present in legumes. J. Bacteriol., 173, 2809-2817.

    PubMed  CAS  Google Scholar 

  • Boncompagni, E., Dupont, L., Mignot, T., Østeräs, M., Lambert, A., Poggi, M. C., and Le Rudulier, D. (2000). Characterization of a Sinorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake. J. Bacteriol., 182, 3717-3725.

    PubMed  CAS  Google Scholar 

  • Booth, I. R. (1985). Regulation of cytoplasmic pH in bacteria. Microbiol. Revs., 49, 359-378.

    CAS  Google Scholar 

  • Borthakur, D., Soedarjo, M., Fox, P. M., and Webb, D. T. (2003). The mid genes of Rhizobium sp strain TAL1145 are required for degradation of mimosine into 3-hydroxy-4-pyridone and are inducible by mimosine. Microbiology, 149, 537-546.

    PubMed  CAS  Google Scholar 

  • Boussau, B., Karlberg, E. O., Frank, A. C., Legault, B.-A., and Anderson, S. G. E. (2004). Computational inferences of scenarios for α -proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA, 101, 9722-9727.

    PubMed  CAS  Google Scholar 

  • Bowra, B. J., and Dilworth, M. J. (1981). Motility and chemotaxis towards sugars in Rhizobium leguminosarum. J. Gen. Microbiol., 126, 231-235.

    CAS  Google Scholar 

  • Bravo, A., and Mora, J. (1988). Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway. J. Bacteriol., 170, 980-984.

    PubMed  CAS  Google Scholar 

  • Breedveld, M. W., Zevenhuizen, L. P., and Zehnder, A. J. (1990). Excessive excretion of cyclic beta-(1,2)-glucan by Rhizobium trifolii TA-1. Appl. Environ. Microbiol., 56, 2080-2086.

    PubMed  CAS  Google Scholar 

  • Breedveld, M. W., and Miller, K. J. (1994). Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol. Rev., 58, 145-161.

    PubMed  CAS  Google Scholar 

  • Bren, A., and Eisenbach, M. (2000). How signals are heard during bacterial chemotaxis: Protein-protein interactions in sensory signal propagation. J. Bacteriol., 182, 6865-6873.

    PubMed  CAS  Google Scholar 

  • Brewin, N. J. (1991). Developement of the legume root nodule. Annu. Rev. Cell Biol., 7, 191-226.

    PubMed  CAS  Google Scholar 

  • Bringhurst, R. M., Cardon, Z. G., and Gage, D. J. (2001). Galactosides in the rhizosphere: Utilization by Sinorhizobium meliloti and development of a biosensor. Proc. Natl. Acad. Sci. USA, 98, 4540-4545.

    PubMed  CAS  Google Scholar 

  • Bringhurst, R. M., and Gage, D. J. (2002). Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti. J. Bacteriol., 184, 5385-5392.

    PubMed  CAS  Google Scholar 

  • Brom, S., Garcia-de los Santos, A., Stepkowsky, T., Flores, M., Davila, G., Romero, D., and Palacios, R. (1992). Different plasmids of Rhizobium leguminosarum bv phaseoli are required for optimal symbiotic performance. J. Bacteriol., 174, 5183-5189.

    PubMed  CAS  Google Scholar 

  • Brom, S., Garcia-de los Santos, A., Cervantes, L., Palacios, R., and Romero, D. (2000). In Rhizobium etli, symbiotic plasmid transfer, nodulation competitivity and cellular growth require interaction among different replicons. Plasmid, 44, 34-43.

    PubMed  CAS  Google Scholar 

  • Burnet, M. W., Goldmann, A., Message, B., Drong, R., El Amrani, A., et al. (2000). The stachydrine catabolism region in Sinorhizobium melilotiencodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria. Gene, 244, 151-161.

    PubMed  CAS  Google Scholar 

  • Caetano-Anolles, G., Wall, L. G., De-Micheli, A. T., Macchi, E. M., Bauer, W. D., and Favelukes, G. (1988). Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol., 86, 1228-1235.

    PubMed  Google Scholar 

  • Carlson, T. A., Martin, G. B., and Chelm, B. K. (1987). Differential transcription of the two glutamine synthetase genes of Bradyrhizobium japonicum. J. Bacteriol., 169, 5861-5866.

    PubMed  CAS  Google Scholar 

  • Cashel, M., Gentry, D. R., Hernandez, V. J., and Vinella, D. (1996). The stringent response. In F. C. C. E. Neidhardt (Ed.), Escherichia coliandSalmonellacellular and molecular biology. (pp. 1458-1496). Washington, D.C.: ASM Press.

    Google Scholar 

  • Castillo, A., Taboada, H., Mendoza, A., Valderrama, B., Encarnación, S., and Mora, J. (2000). Role of GOGAT in carbon and nitrogen partitioning in Rhizobium etli. Microbiology, 146, 1627-1637.

    PubMed  CAS  Google Scholar 

  • Cevallos, M. A., Encarnacion, S., Leija, A., Mora, Y., and Mora, J. (1996). Genetic and physiological characterization of aRhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J. Bacteriol., 178, 1646-1654.

    PubMed  CAS  Google Scholar 

  • Chao, T. C., Becker, A., Buhrmester, J., Pühler, A., and Weidner, S. (2004). The Sinorhizobium meliloti fur gene regulates, with dependence on Mn(II), transcription of the sitABCD operon, encoding a metal-type transporter. J. Bacteriol., 186, 3609-3620.

    PubMed  CAS  Google Scholar 

  • Charles, T. C., Cai, G. Q., and Aneja, P. (1997). Megaplasmid and chromosomal loci for the PHB degradation pathway in Rhizobium (Sinorhizobium) meliloti. Genetics, 146, 1211-1220.

    PubMed  CAS  Google Scholar 

  • Charles, T. C., and Aneja, P. (1999). Methylmalonyl-CoA mutase encoding gene of Sinorhizobium meliloti. Gene, 226, 121-127.

    PubMed  CAS  Google Scholar 

  • Chen, F., Okabe, Y., Osano, K., and Tajima, S. (1997). Purification and characterization of the NADP-malic enzyme from Bradyrhizobium japonicum A1017. Biosci. Biotech. Biochem., 61, 384-386.

    CAS  Google Scholar 

  • Chen, F., Okabe, Y., Osano, K., and Tajima, S. (1998). Purification and characterization of an NAD-malic enzyme from Bradyrhizobium japonicumA1017. Appl. Environ. Microbiol., 64, 4073-4075.

    PubMed  CAS  Google Scholar 

  • Copeland, L., Quinnell, R. G., and Day, D. A. (1989). Malic enzyme activity in bacteroids from soybean nodules. J. Gen. Microbiol., 135, 2005-2011.

    CAS  Google Scholar 

  • Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev., 53, 121-147.

    PubMed  CAS  Google Scholar 

  • Cubo, T., Economou, A., Murphy, G., Johnston, A. W. B., and Downie, J. A. (1992). Molecular characterisation and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum bv viciae. J. Bacteriol., 174, 4026-4035.

    PubMed  CAS  Google Scholar 

  • Daniels, R., De Vos, D. E., Desair, J., Raedschelders, G., Luyten, E., Rosemeyer, V., et al. (2002). The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J. Biol. Chem., 277, 462-468.

    PubMed  CAS  Google Scholar 

  • Daniels, R., Vanderleyden, J., and Michiels, J. (2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiol. Rev., 28, 261-289.

    PubMed  CAS  Google Scholar 

  • Danino, V. E., Wilkinson, A., Edwards, A., and Downie, J. A. (2003). Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum- sensing relay. Mol. Microbiol., 50, 511-525.

    PubMed  CAS  Google Scholar 

  • Dardanelli, M. S., González, P. S., Bueno, M. A., and Ghittoni, N. E. (2000). Synthesis, accumulation and hydrolysis of trehalose during growth of peanut rhizobia in hyperosmotic media. J. Basic Microbiol., 40, 149-156.

    PubMed  CAS  Google Scholar 

  • Davey, M. E., and de Bruijn, F. J. (2000). A homologue of the tryptophan-rich sensory protein TspO and FixL regulate a novel nutrient deprivation-induced Sinorhizobium meliloti locus. Appl. Environ. Microbiol., 66, 5353-5359.

    PubMed  CAS  Google Scholar 

  • Day, D. A., Kaiser, B. N., Thomson, R., Udvardi, M. K., Moreau, S., and Puppo, A. (2001). Nutrient transport across symbiotic membranes from legume nodules. Aust. J. Plant Physiol., 28, 667-674.

    CAS  Google Scholar 

  • Deakin, W. J., Parker, V. E., Wright, E. L., Ashcroft, K. J., Loake, G. J., and Shaw, C. H. (1999). Agrobacterium tumefaciens possesses a fourth flagellin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. Microbiology, 145, 1397-1407.

    PubMed  CAS  Google Scholar 

  • Del Bel, K. L. (2004).Genetic regulation of chemotaxis and motility in Rhizobium leguminosarum. Ph.D. thesis, University of Calgary, Canada.

    Google Scholar 

  • del Papa, M. F., Balagué, L. J., Sowinski, S. C., Wegener, C., Segundo, E., Abarca, F. M., et al. (1999). Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central Argentina and Uruguay. Appl. Environ. Microbiol., 65, 1420-1427.

    PubMed  CAS  Google Scholar 

  • Dharmatilake, A. J., and Bauer, W. D. (1992). Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol., 58, 1153-1158.

    PubMed  CAS  Google Scholar 

  • Díaz-Mireles, E., Wexler, M., Sawers, G., Bellini, D., Todd, J. D., and Johnston, A. W. B. (2004). The Fur-like protein Mur of Rhizobium leguminosarum is a Mn2 +-responsive transcriptional regulator. Microbiology, 150, 1447-1456.

    PubMed  Google Scholar 

  • Dilworth, M. J., Tiwari, R. P., Reeve, W. G., and Glenn, A. R. (2000). Legume root nodule bacteria and acid pH. Sci. Prog., 83, 357-389.

    PubMed  CAS  Google Scholar 

  • Djordjevic, M. A., Chen, H. C., Natera, S., Van Noorden, G., Menzel, C., Taylor, S., et al. (2003). A global analysis of protein expression profiles in Sinorhizobium meliloti: Discovery of new genes for nodule occupancy and stress adaptation. Mol. Plant-Microbe Interact., 16, 508-524.

    PubMed  CAS  Google Scholar 

  • Dombrecht, B., Heusdens, C., Beullens, S., Verreth, C., Mulkers, E., Proost, P., et al. (2005). Defence of Rhizobium etli bacteroids against oxidative stress involves a complexly regulated atypical 2-Cys peroxiredoxin. Mol. Microbiol., 55, 1207-1221.

    PubMed  CAS  Google Scholar 

  • Driscoll, B. T., and Finan, T. M. (1993). NAD+-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol. Microbiol., 7, 865-873.

    PubMed  CAS  Google Scholar 

  • Driscoll, B. T., and Finan, T. M. (1996). NADP+-dependent malic enzyme of Rhizobium meliloti. J. Bacteriol., 178, 2224-2231.

    PubMed  CAS  Google Scholar 

  • Driscoll, B. T., and Finan, T. M. (1997). Properties of NAD+- and NADP+-dependent malic enzymes of Rhizobium (Sinorhizobium)meliloti and differential expression of their genes in nitrogen-fixing bacteroids. Microbiology, 143, 489-498.

    PubMed  Google Scholar 

  • Duncan, M. J., and Fraenkel, D. G. (1979). α -Ketoglutarate dehydogenase mutant of Rhizobium meliloti. J. Bacteriol., 137, 415-419.

    PubMed  CAS  Google Scholar 

  • Dunn, M. F. (1998). Tricarboxylic acid cycle and anaplerotic enzymes in rhizobia. FEMS Microbiol.Rev., 22, 105-123.

    PubMed  CAS  Google Scholar 

  • Dunn, S. D., and Klucas, R. V. (1973). Studies on possible routes of ammonium assimilation in soybean root nodule bacteroids. Can. J. Microbiol., 19, 1493-1499.

    PubMed  CAS  Google Scholar 

  • Duran, S., and Calderon, J. (1995). Role of the glutamine transaminase-ω -amidase pathway and glutaminase in glutamine degradation in Rhizobium etli. Microbiology, 141, 589-595.

    CAS  Google Scholar 

  • Duran, S., Du Pont, G., Huerta-Zepeda, A., and Calderon, J. (1995). The role of glutaminase in Rhizobium etli: Studies with a new mutant. Microbiology, 141, 2883-2889.

    PubMed  CAS  Google Scholar 

  • Dymov, S. I., Meek, D. J. J., Steven, B., and Driscoll, B. T. (2004). Insertion of transpoon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes. Mol. Plant-Microbe Interact., 17, 1318-1327.

    PubMed  CAS  Google Scholar 

  • Eggenhofer, E., Haslbeck, M., and Scharf, B. (2004). MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti. Mol. Microbiol., 52, 701-712.

    PubMed  CAS  Google Scholar 

  • Encarnacion, S., Calderon, J., Gelbard, A. S., Cooper, A. J. L., and Mora, J. (1998). Glutamine biosynthesis and the utilization of succinate and glutamine by Rhizobium etli and Sinorhizobium meliloti. Microbiology, 144, 2629-2638.

    PubMed  CAS  Google Scholar 

  • Endley, S., McMurray, D., and Ficht, T. A. (2001). Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J. Bacteriol., 183, 2454-2462.

    PubMed  CAS  Google Scholar 

  • Entcheva, P., Phillips, D. A., and Streit, W. R. (2002). Functional analysis of Sinorhizobium meliloti genes involved in biotin synthesis and transport. Appl. Environ. Microbiol., 68, 2843-2848.

    PubMed  CAS  Google Scholar 

  • Fenner, B. J., Tiwari, R. P., Reeve, W. G., Dilworth, M. J., and Glenn, A. R. (2004). Sinorhizobium medicae genes whose regulation involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol. Lett., 236, 21-31.

    PubMed  CAS  Google Scholar 

  • Ferguson, G. P., Roop, 2nd, R. M., and Walker, G. C. (2002). Deficiency of a Sinorhizobium meliloti bacA mutant in alfalfa symbiosis correlates with alteration of the cell envelope. J. Bacteriol., 184, 5625-5632.

    PubMed  CAS  Google Scholar 

  • Ferguson, G. P., Datta, A., Baumgartner, J., Roop, R. M., Carlson, R. W., and Walker, G. C. (2004). Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc. Natl. Acad. Sci. USA, 101, 5012-5017.

    PubMed  CAS  Google Scholar 

  • Ferraioli, S., Taté, R., Cermola, M., Favre, R., Iaccarino, M., and Patriarca, E. J. (2002). Auxotrophic mutant strains of Rhizobium etli reveal new nodule development phenotypes. Mol. Plant-Microbe Interact., 15, 501-510.

    PubMed  CAS  Google Scholar 

  • Fischer, H. M., Babst, M., Kaspar, T., Acuna, G., Arigoni, F., and Hennecke, H. (1993). One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J., 12, 2901-2912.

    PubMed  CAS  Google Scholar 

  • Fitzmaurice, A. M., and O’Gara, F. (1991). Glutamate catabolism in Rhizobium meliloti. Arch. Microbiol., 155, 422-427.

    CAS  Google Scholar 

  • Fitzmaurice, A. M., and O’Gara, F. (1993). A Rhizobium meliloti mutant, lacking a functional γ - aminobutyrate (GABA) bypass, is defective in glutamate catabolism and symbiotic nitrogen fixation. FEMS Microbiol. Lett., 109, 195-202.

    CAS  Google Scholar 

  • Friedman, Y. E., and O’Brian, M. R. (2003). A novel DNA-binding site for the ferric uptake regulator (Fur) protein from Bradyrhizobium japonicum. J. Biol. Chem., 278, 38395-38401.

    PubMed  CAS  Google Scholar 

  • Friedman, Y. E., and O’Brian, M. R. (2004). The ferric uptake regulator (Fur) protein from Bradyrhizobium japonicumis an iron-responsive transcriptional repressor in vitro. J. Biol. Chem., 279, 32100-32105.

    PubMed  CAS  Google Scholar 

  • Fry, J., Wood, M., and Poole, P. S. (2001). Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv.viciae and its effect on nodulation competitiveness. Mol. Plant-Microbe Interact., 14, 1016-1025.

    PubMed  CAS  Google Scholar 

  • Fuhrer, T., Fischer, E., and Sauer, U. (2005). Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol., 187, 1581-1590.

    PubMed  CAS  Google Scholar 

  • Gage, D. J. (2002). Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J. Bacteriol., 184, 7042-7046.

    PubMed  CAS  Google Scholar 

  • Gage, D. J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev., 68, 280-300.

    PubMed  CAS  Google Scholar 

  • Gage, D. J., Bobo, T., and Long, S. R. (1996). Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J. Bacteriol., 178, 7159-7166.

    PubMed  CAS  Google Scholar 

  • Gage, D. J., and Long, S. R. (1998). α -Galactoside uptake in Rhizobium meliloti: Isolation and characterization of agpA, a gene encoding a periplasmic binding protein required for melibiose and raffinose utilization. J. Bacteriol., 180, 5739-5748.

    PubMed  CAS  Google Scholar 

  • Gage, D. J., and Margolin, W. (2000). Hanging by a thread: Invasion of legume plants by rhizobia. Curr. Opin. Microbiol., 3, 613-617.

    PubMed  CAS  Google Scholar 

  • Galbraith, M. P., Feng, S. F., Borneman, J., Triplett, E. W., de Bruijn, F. J., and Rossbach, S. (1998). A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiology, 144, 2915-2924.

    PubMed  CAS  Google Scholar 

  • Galibert, F., Finan, T. M., Long, S. R., Pühler, A., Abola, P., Ampe, F., et al. (2001). The composite genome of the legume symbiont Sinorhizobium meliloti. Science, 293, 668-672.

    PubMed  CAS  Google Scholar 

  • Geiger, O., Röhrs, V., Weissenmayer, B., Finan, T. M., and Thomas-Oates, J. E. (1999). The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl-N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol. Microbiol., 32, 63-73.

    PubMed  CAS  Google Scholar 

  • Giraud, E., Hannibal, L., Fardoux, J., Verméglio, A., and Dreyfus, B. (2000). Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proc. Natl. Acad. Sci. USA, 97, 14795-14800.

    PubMed  CAS  Google Scholar 

  • Giraud, E., and Fleischman, D. (2004). Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynth. Res., 82, 115-130.

    PubMed  CAS  Google Scholar 

  • Glenn, A. R., and Dilworth, M. J. (1981). The uptake and hydrolysis of disaccharides by fast- and slow-growing species of Rhizobium. Arch. Microbiol., 129, 233-239.

    CAS  Google Scholar 

  • Glenn, A. R., McKay, I. A., Arwas, R., and Dilworth, M. J. (1984). Sugar metabolism and the symbiotic properties of carbohydrate mutants of Rhizobium leguminosarum. J. Gen. Microbiol., 130, 239-245.

    CAS  Google Scholar 

  • Glenn, A. R., Reeve, W. G., Tiwari, R. P., and Dilworth, M. J. (1999). Acid tolerance in root nodule bacteria. Novartis Found. Symp., 221, 112-126.

    PubMed  CAS  Google Scholar 

  • Goldmann, A., Boivin, C., Fleury, V., Message, B., Lecoeur, L., Maille, M., and Tepfer, D. (1991). Betaine use by rhizosphere bacteria - genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol. Plant-Microbe Interact., 4, 571-578.

    PubMed  CAS  Google Scholar 

  • González, J. E., and Marketon, M. M. (2003). Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev., 67, 574-592.

    PubMed  Google Scholar 

  • Gordon, D. M., Ryder, M. H., Heinrich, K., and Murphy, P. J. (1996). An experimental test of the rhizopine concept in Rhizobium meliloti. Appl. Environ. Microbiol., 62, 3991-3996.

    PubMed  CAS  Google Scholar 

  • Gotz, R., Limmer, N., Ober, K., and Schmitt, R. (1982). Motility and chemotaxis in 2 strains of Rhizobium with complex flagella. J. Gen. Microbiol., 128, 789-798.

    Google Scholar 

  • Gotz, R., and Schmitt, R. (1987). Rhizobium meliloti swims by unidirectional, intermittent rotation of right-handed flagellar helices. J. Bacteriol., 169, 3146-3150.

    PubMed  CAS  Google Scholar 

  • Gouffi, K., Pichereau, V., Rolland, J. P., Thomas, D., Bernard, T., and Blanco, C. (1998). Sucrose is a nonaccumulated osmoprotectant in Sinorhizobium meliloti. J. Bacteriol., 180, 5044-5051.

    PubMed  CAS  Google Scholar 

  • Gouffi, K., Pica, N., Pichereau, V., and Blanco, C. (1999). Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl. Environ. Microbiol., 65, 1491-1500.

    PubMed  CAS  Google Scholar 

  • Graham, P. H., and Parker, C. A. (1964). Diagnostic features in the characterisation of the root-nodule bacteria of legumes. Plant Soil, 20, 383-396.

    Google Scholar 

  • Graham, P. H., Draeger, K. J., Ferrey, M. L., Conroy, M. J., Hammer, B. E., et al. (1994). Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol., 40, 198-207.

    CAS  Google Scholar 

  • Gray, K. M., Pearson, J. P., Downie, J. A., Boboye, B. E., and Greenberg, E. P. (1996). Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum - autoinduction of a stationary- phase and rhizosphere-expressed genes. J. Bacteriol., 178, 372-376.

    PubMed  CAS  Google Scholar 

  • Green, L. S., and Emerich, D. W. (1997a). The formation of nitrogen-fixing bacteroids is delayed but not abolished in soybean infected by an alpha-ketoglutarate dehydrogenase-deficient mutant of Bradyrhizobium japonicum. Plant Physiol., 114, 1359-1368.

    CAS  Google Scholar 

  • Green, L. S., and Emerich, D. W. (1997b). Bradyrhizobium japonicum does not require alpha-ketoglutarate dehydrogenase for growth on succinate or malate. J. Bacteriol., 179, 194-201.

    CAS  Google Scholar 

  • Green, L. S., and Emerich, D. W. (1999). Light microscopy of early stages in the symbiosis of soybean with a delayed-nodulation mutant of Bradyrhizobium japonicum. J. Exp. Bot., 50, 1577-1585.

    CAS  Google Scholar 

  • Green, L. S., Li, Y. Z., Emerich, D. W., Bergersen, F. J., and Day, D. A. (2000). Catabolism of α -ketoglutarate by a sucAmutant of Bradyrhizobium japonicum: Evidence for an alternative tricarboxylic acid cycle. J. Bacteriol., 182, 2838-2844.

    PubMed  CAS  Google Scholar 

  • Green, L. S., Waters, J. K., Ko, S., and Emerich, D. W. (2003). Comparative analysis of the Bradyrhizobium japonicum sucA region. Can. J. Microbiol., 49, 237-243.

    PubMed  CAS  Google Scholar 

  • Gulash, M., Ames, P., Larosiliere, R. C., and Bergman, K. (1984). Rhizobia are attracted to localized sites on legume roots. Appl. Environ. Microbiol., 48, 149-152.

    PubMed  CAS  Google Scholar 

  • Guntli, D., Heeb, M., Mo¸nne-Loccoz, Y., and Défago, G. (1999). Contribution of calystegine catabolic plasmid to competitive colonization of the rhizosphere of calystegine-producing plants by Sinorhizobium meliloti Rm41. Mol. Ecol., 8, 855-863.

    CAS  Google Scholar 

  • Hamza, I., Chauhan, S., Hassett, R., and O’Brian, M. R. (1998). The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J. Biol. Chem., 273, 21669-21674.

    PubMed  CAS  Google Scholar 

  • Hamza, I., Hassett, R., and O’Brian, M. R. (1999). Identification of a functional fur gene in Bradyrhizobium japonicum. J. Bacteriol., 181, 5843-5846.

    PubMed  CAS  Google Scholar 

  • Hamza, I., Qi, Z. H., King, N. D., and O’Brian, M. R. (2000). Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum. Microbiology, 146, 669-676.

    PubMed  CAS  Google Scholar 

  • Hauwaerts, D., Alexandre, G., Das, S. K., Vanderleyden, J., and Zhulin, I. B. (2002). A major chemotaxis gene cluster inAzospirillum brasilense and relationships between chemotaxis operons in alpha-proteobacteria. FEMS Micrbiol. Lett., 208, 61-67.

    CAS  Google Scholar 

  • He, X. S., Chang, W., Pierce, D. L., Seib, L. O., Wagner, J., and Fuqua, C. (2003). Quorum sensing inRhizobiumsp strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J. Bacteriol., 185, 809-822.

    PubMed  CAS  Google Scholar 

  • Heinrich, K., Gordon, D. M., Ryder, M. H., and Murphy, P. J. (1999). A rhizopine strain of Sinorhizobium meliloti remains at a competitive nodulation advantage after an extended period in the soil. Soil Biol. Biochem., 31, 1063-1065.

    CAS  Google Scholar 

  • Heinrich, K., Ryder, M. H., and Murphy, P. J. (2001). Early production of rhizopine in nodules induced by Sinorhizobium melilotistrain L5-30. Can. J. Microbiol., 47, 165-171.

    PubMed  CAS  Google Scholar 

  • Hernandez-Lucas, I., Pardo, M. A., Segovia, L., Miranda, J., and Martinez-Romero, E. (1995). Rhizobium tropici chromosomal citrate synthase gene. Appl. Environ. Microbiol., 61, 3992-3997.

    PubMed  CAS  Google Scholar 

  • Herrada, G., Puppo, A., and Rigaud, J. (1989). Uptake of metabolites by bacteroid-containing vesicles and by free bacteroids from french bean nodules. J. Gen. Microbiol., 135, 3165-3177.

    CAS  Google Scholar 

  • Hirsch, P. R. (1979). Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J. Gen. Microbiol., 113, 219-228.

    CAS  Google Scholar 

  • Hoang, H. H., Becker, A., and Gonzalez, J. E. (2004). The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J. Bacteriol., 186, 5460-5472.

    PubMed  CAS  Google Scholar 

  • Hoelzle, I., and Streeter, J. G. (1989). Higher trehalose accumulation in rhizobia under salt stress. Plant Physiol., S89, 118.

    Google Scholar 

  • Hosie, A. H. F., Allaway, D., Jones, M. A., Walshaw, D. L., Johnston, A.W. B., and Poole, P. S. (2001). Solute-binding protein-dependent ABC transporters are responsible for solute efflux in addition to solute uptake. Mol. Microbiol., 40, 1449-1459.

    PubMed  CAS  Google Scholar 

  • Hosie, A. H. F., Allaway, D., and Poole, P. S. (2002). A monocarboxylate permease of Rhizobium leguminosarum is the first member of a new subfamily of transporters. J. Bacteriol., 184, 5436-5448.

    PubMed  CAS  Google Scholar 

  • Howieson, J. G., and Ewing, M. A. (1986). Acid-tolerance in the Rhizobium meliloti-Medicago symbiosis. Aust. J. Agric. Res., 37, 55-64.

    Google Scholar 

  • Howieson, J. G., Ewing, M. A., and D’Antuono, M. F. (1988). Selection for acid-tolerance in Rhizobium meliloti. Plant Soil, 105, 179-188.

    CAS  Google Scholar 

  • Howieson, J. G., Robson, A. D., and Abbott, L. K. (1992). Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti. Aust. J. Agric. Res., 43, 765-772.

    CAS  Google Scholar 

  • Howorth, S. M., and England, R. R. (1999). Accumulation of ppGpp in symbiotic and free-living nitrogen-fixing bacteria following amino acid starvation. Arch. Microbiol., 171, 131-134.

    PubMed  CAS  Google Scholar 

  • Hynes, M. F., and McGregor, N. F. (1990). Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol. Microbiol., 4, 567-574.

    PubMed  CAS  Google Scholar 

  • Hynes, M. F., and O’Connell, M. P. (1990). Host plant effect on competition among strains ofRhizobium leguminosarum. Can. J. Microbiol., 36, 864-869.

    Google Scholar 

  • Ielpi, L., Dylan, T., Ditta, G. S., Helinski, D. R., and Stanfield, S. W. (1990). The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of beta-(1,2)-glucan. J. Biol. Chem., 265, 2843-2851.

    PubMed  CAS  Google Scholar 

  • Jamet, A., Sigaud, S., Van de Sype, G., Puppo, A., and Hérouart, D. (2003). Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol. Plant-Microbe Interact., 16, 217-225.

    PubMed  CAS  Google Scholar 

  • Jamet, A., Kiss, E., Batut, J., .Puppo, A., and Hérouart, D. (2005). The katA catalase gene is regulated by OxyR in both free-living and symbiotic Sinorhizobium meliloti. J. Bacteriol., 187, 376-381.

    PubMed  CAS  Google Scholar 

  • Jelesko, J. G., and Leigh, J. A. (1994). Genetic characterisation of a Rhizobium meliloti lactose utilization locus. Mol. Microbiol., 11, 165-173.

    PubMed  CAS  Google Scholar 

  • Jensen, J. B., Peters, N. K., and Bhuvaneswari, T. V. (2002). Redundancy in periplasmic binding protein-dependent transport systems for trehalose, sucrose, and maltose in Sinorhizobium meliloti. J. Bacteriol., 184, 2978-2986.

    PubMed  CAS  Google Scholar 

  • Jiang, G. Q., Krishnan, A. H., Kim, Y. W., Wacek, T. J., and Krishnan, H. B. (2001). A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J. Bacteriol., 183, 2595-2604.

    PubMed  CAS  Google Scholar 

  • Jiang, J. Q., Wei, W., Du, B. H., Li, X. H., Wang, L., and Yang, S. S. (2004). Salt-tolerance genes involved in cation efflux and osmoregulation of Sinorhizobium frediiRT19 detected by isolation and characterization of Tn5 mutants. FEMS Micrbiol. Lett., 239, 139-146.

    CAS  Google Scholar 

  • Jiménez-Zurdo, J. I., Van Dillewijn, P., Soto, M. J., de Felipe, M. R., Olivares, J., and Toro, N. (1995). Characterization of a Rhizobium melilotiproline dehydrogenase mutant altered in nodulation efficiency and competitiveness on alfalfa roots.Mol. Plant-Microbe Interact., 8, 492-498.

    Google Scholar 

  • Jiménez-Zurdo, J. I., Garcia-Rodríguez, F. M., and Toro, N. (1997). The Rhizobium meliloti putA gene: Its role in the establishment of the symbiotic interaction with alfalfa. Mol. Microbiol., 23, 85-93.

    PubMed  Google Scholar 

  • Jin, H. N., Dilworth, M. J., and Glenn, A. R. (1990). 4-Aminobutyrate is not available to bacteroids of cowpea Rhizobium MNF2030 in snake bean nodules. Arch. Microbiol., 153, 455-462.

    CAS  Google Scholar 

  • Johnston, A. W. B., Yeoman, K. H., and Wexler, M. (2001). Metals and the rhizobial-legume symbiosis - Uptake, utilization and signalling. .Adv. Microb. Physiol., 45, 113-156.

    PubMed  CAS  Google Scholar 

  • Johnston, A. W. B. (2004). Mechanisms and regulation of iron uptake in the rhizobia. In J. H. Crossa, A. R. Mey, and S. M. Payne (Eds.), Iron transport in bacteria: Molecular genetics, biochemistry, microbial pathogenesis and ecology. (pp. 469-488). Washington, D.C.: ASM Press.

    Google Scholar 

  • Jordan, D. C. (1984). Family III Rhizobiaceae. In N. R. Kreig and J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology. (pp. 234-244). Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  • Jording, D., and Pühler, A. (1993). The membrane topology of the Rhizobium meliloti C4-dicarboxylate permease (DctA) as derived from protein fusions with Escherichia coli K12 alkaline-phosphatase (PhoA) and beta-galactosidase (LacZ). Mol. Gen. Genet., 241, 106-114.

    PubMed  CAS  Google Scholar 

  • Kaiser, B. N., Moreau, S., Castelli, J., Thomson, R., Lambert, A., Bogliolo, S., et al. (2003). The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J., 35, 295-304.

    PubMed  CAS  Google Scholar 

  • Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., et al. (2000). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res., 7, 331-338.

    PubMed  CAS  Google Scholar 

  • Kaneko, T., Nakamura, Y., Sato, S., Minimisawa, K., Uchiumi, T., Sasamoto, S., et al. (2002). Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res., 9, 189-197.

    PubMed  Google Scholar 

  • Kazakova, O. V., Tsuprun, V. L., Ivanushkin, A. G., Kaftanova, A. S., Pushkin, A. V., and Kretovich, V. L. (1988). Quaternary structure and kinetic characteristics of alanine dehydrogenase from Rhizobium lupinibacteroids. Dokl. Akad. Nauk SSSR(English translation), 300, 131-134.

    Google Scholar 

  • Kennedy, E. P. (1996). Membrane-derived oligosaccharides (periplasmic beta-D-glucans) of Escherichia coli. In F. C. Neidhardt (Ed.), Escherichia coliandSalmonellacellular and molecular biology. (pp. 1064-1071). Washington, D.C.: American Society for Microbiology Press.

    Google Scholar 

  • Kim, Y. S. (2002). Malonate metabolism: Biochemistry, molecular biology, physiology, and industrial application. J. Biochem. Mol. Biol., 35, 443-451.

    PubMed  CAS  Google Scholar 

  • Kimura, I., and Tajima, S. (1989). Presence and characteristics of NADP-malic enzyme in soybean nodule bacteroids. Soil Sci. Plant Nutr., 35, 271-280.

    CAS  Google Scholar 

  • Kiss, E., Huguet, T., Poinsot, V., and Batut, J. (2004). The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Mol. Plant-Microbe Interact., 17, 235-244.

    PubMed  CAS  Google Scholar 

  • Kleiner, D., and Phillips, S. (1981). Relative levels of guanosine 5’-diphosphate 3’-diphosphate (ppGpp) in some N2 fixing bacteria during derepression and repression of nitrogenase. Arch. Microbiol., 128, 341-342.

    PubMed  CAS  Google Scholar 

  • Knee, E. M., Gong, F. C., Gao, M. S., Teplitski, M., Jones, A. R., et al. (2001). Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol. Plant-Microbe Interact., 14, 775-784.

    PubMed  CAS  Google Scholar 

  • Kouchi, H., Fukai, K., and Kihara, A. (1991). Metabolism of glutamate and aspartate in bacteroids isolated from soybean root nodules. J. Gen. Microbiol., 137, 2901-2910.

    CAS  Google Scholar 

  • Lambein, F., Khan, J. K., Kuo, Y. H., Campbell, C. G., and Briggs, C. J. (1993). Toxins in the seedlings of some varieties of grass pea. Nat. Toxins, 1, 246-249.

    PubMed  CAS  Google Scholar 

  • Lambert, A., ØsterÃ¥s, M., Mandon, K., Poggi, M. C., and Le Rudulier, D. (2001). Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J. Bacteriol., 183, 4709-4717.

    PubMed  CAS  Google Scholar 

  • Latch, J. N., and Margolin, W. (1997). Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti. J. Bacteriol., 179, 2373-2381.

    PubMed  CAS  Google Scholar 

  • Leigh, J. A., and Walker, G. C. (1994). Exopolysaccharides of Rhizobium - synthesis, regulation and symbiotic function. Trends Genet., 10, 63-67.

    PubMed  CAS  Google Scholar 

  • LeVier, K., and Guerinot, M. L. (1996). The Bradyrhizobium japonicum fegA gene encodes an iron-regulated outer-membrane protein with similarity to hydroxamate-type siderophore receptors. J. Bacteriol., 178, 7265-7275.

    PubMed  CAS  Google Scholar 

  • Lithgow, J. K., Wilkinson, A., Hardman, A., Rodelas, B., Wisniewski-Dyé, F., et al. (2000). The regulatory locus cinRI in Rhizobium leguminosarumcontrols a network of quorum-sensing loci. Mol. Microbiol., 37, 81-97.

    PubMed  CAS  Google Scholar 

  • Lloret, J., Wulff, B. B. H., Rubio, J. M., Downie, J. A., Bonilla, I., and Rivilla, R. (1998). Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1. Appl. Environ. Microbiol., 64, 1024-1028.

    PubMed  CAS  Google Scholar 

  • Lodwig, E., and Poole, P. S. (2003). Metabolism of Rhizobium bacteroids. Crit. Rev. Plant Sci., 22, 37-78.

    CAS  Google Scholar 

  • Lodwig, E., Kumar, S., Allaway, D., Bourdés, A., Prell, J., et al. (2004). Regulation of L-alanine dehydrogenase in Rhizobium leguminosarum bv. viciae and its role in pea nodules. J. Bacteriol., 186, 842-849.

    PubMed  CAS  Google Scholar 

  • Lodwig, E. M., Hosie, A. H. F., Bourdés, A., Findlay, K., Allaway, D., et al. (2003). Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature, 422, 722-726.

    PubMed  CAS  Google Scholar 

  • Lodwig, E. M., Leonard, M., Marroqui, S., Wheeler, T. R., Findlay, K., et al. (2005). Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. Mol. Plant-Microbe Interact., 18, 67-74.

    PubMed  CAS  Google Scholar 

  • Loh, J., Carlson, R. W., York, W. S., and Stacey, G. (2002). Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc. Natl. Acad. Sci. USA, 99, 14446-14451.

    PubMed  CAS  Google Scholar 

  • Mandon, K., Michel-Reydellet, N., Encarnación, S., Kaminski, P. A., Leija, A., et al. (1998). Poly-β -hydroxybutyrate turnover in Azorhizobium caulinodans is required for growth and affects nifA expression. J. Bacteriol., 180, 5070-5076.

    PubMed  CAS  Google Scholar 

  • Marketon, M. M., and Gonzalez, J. E. (2002). Identification of two quorum-sensing systems in Sinorhizobium meliloti. J. Bacteriol., 184, 3466-3475.

    PubMed  CAS  Google Scholar 

  • Marketon, M. M., Gronquist, M. R., Eberhard, A., and González, J. E. (2002). Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J. Bacteriol., 184, 5686-5695.

    PubMed  CAS  Google Scholar 

  • Marketon, M. M., Glenn, S. A., Eberhard, A., and González, J. E. (2003). Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol., 185, 325-331.

    PubMed  CAS  Google Scholar 

  • Marroquí, S., Zorreguieta, A., Santamaría, C., Temprano, F., Soberón, M., et al. (2001). Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J. Bacteriol., 183, 854-864.

    PubMed  Google Scholar 

  • Marsudi, N. D. S., Glenn, A. R., and Dilworth, M. J. (1999). Identification and characterization of fast- and slow-growing root nodule bacteria from South-Western Australian soils able to nodulate Acacia saligna. Soil Biol. Biochem., 31, 1229-1238.

    CAS  Google Scholar 

  • McDermott, T. R., and Kahn, M. L. (1992). Cloning and mutagenesis of the Rhizobium meliloti isocitrate dehydrogenase gene. J. Bacteriol., 174, 4790-4797.

    PubMed  CAS  Google Scholar 

  • McKay, I. A., Glenn, A. R., and Dilworth, M. J. (1985). Gluconeogenesis in Rhizobium leguminosarum MNF3841. J. Gen. Microbiol., 131, 2067-2073.

    CAS  Google Scholar 

  • McKay, I. A., Dilworth, M. J., and Glenn, A. R. (1989). Carbon catabolism in continuous cultures and bacteroids of Rhizobium leguminosarum MNF3841. Arch. Microbiol., 152, 606-610.

    CAS  Google Scholar 

  • McNab, R. (2003). How bacteria assemble flagella. Annu. Rev. Microbiol., 57, 77-100.

    Google Scholar 

  • McRae, D. G., Miller, R. W., and Berndt, W. B. (1989). Viability of alfalfa nodule bacteroids isolated by density gradient centrifugation. Symbiosis 7, 67-80.

    Google Scholar 

  • Milcamps, A., Ragatz, D. M., Lim, P., Berger, K. A., and de Bruijn, F. J. (1998). Isolation of carbon- and nitrogen-deprivation-induced loci of Sinorhizobium meliloti 1021 by Tn5-luxABmutagenesis. Microbiology, 144, 3205-3218.

    PubMed  CAS  Google Scholar 

  • Milcamps, A., and de Bruijn, F. J. (1999). Identification of a novel nutrient-deprivation-induced Sinorhizobium melilotigene (hmgA) involved in the degradation of tyrosine. Microbiology, 145, 935-947.

    PubMed  CAS  Google Scholar 

  • Milcamps, A., Struffi, P., and de Bruijn, F. J. (2001). The Sinorhizobium meliloti nutrient-deprivation-induced tyrosine degradation gene hmgA is controlled by a novel member of the arsR family of regulatory genes. Appl. Environ. Microbiol., 67, 2641-2648.

    PubMed  CAS  Google Scholar 

  • Miller, K. J., Kennedy, E. P., and Reinhold, V. N. (1986). Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science, 231, 48-51.

    PubMed  CAS  Google Scholar 

  • Miller, K. J., and Wood, J. M. (1996). Osmoadaptation by rhizosphere bacteria. Annu. Rev. Microbiol., 50, 101-136.

    PubMed  CAS  Google Scholar 

  • Miller, R. W., McRae, D. G., and Joy, K. (1991). Glutamate and gamma-aminobutyrate metabolism in isolated Rhizobium meliloti bacteroids. Mol. Plant-Microbe Interact., 4, 37-45.

    CAS  Google Scholar 

  • Miranda-Ríos, J., Morera, C., Taboada, H., Dávalos, A., Encarnación, S., et al. (1997). Expression of thiamin biosynthetic genes (thiCOGE) and production of symbiotic terminal oxidase cbb3 in Rhizobium etli. J. Bacteriol., 179, 6887-6893.

    PubMed  Google Scholar 

  • Miranda-Ríos, J., Navarro, M., and Soberón, M. (2001). A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc. Natl. Acad. Sci. USA, 98, 9736-9741.

    PubMed  Google Scholar 

  • Mitsch, M. J., Voegele, R. T., Cowie, A., Osteras, M., and Finan, T. M. (1998). Chimeric structure of the NAD(P)+- and NADP+-dependent malic enzymes of Rhizobium(Sinorhizobium) meliloti. J. Biol. Chem., 273, 9330-9336.

    PubMed  CAS  Google Scholar 

  • Moënne-Loccoz, Y., Baldani, J. I., and Weaver, R. W. (1995). Sequential heat-curing of Tn5-mob-sac labeled plasmids from Rhizobium to obtain derivatives with various combinations of plasmids and no plasmid. Lett. Appl. Microbiol., 20, 175-179.

    Google Scholar 

  • Munns, D. N. (1986). Acid soil tolerance in legumes and rhizobia. In B. Tinker and A. Lauchli (Eds.),.Advances in plant nutrition. (pp. 63-91). New York, NY: Praeger Scientific.

    Google Scholar 

  • Murphy, P. J., Heycke, N., Trenz, S. P., Ratet, P., de Bruijn, F., and Schell, J. (1988). Synthesis of an opine-like compound, a rhizopine, in alfalfa nodules is symbiotically regulated. Proc. Natl. Acad. Sci. USA, 85, 9133-9137.

    PubMed  CAS  Google Scholar 

  • Murphy, P. J., Wexler, W., Grzemski, W., Rao, J. P., and Gordon, D. (1995). Rhizopines - their role in symbiosis and competition. Soil Biol. Biochem., 27, 525-529.

    CAS  Google Scholar 

  • Newton, J. A., and Fray, R. G. (2004). Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol., 6, 213-224.

    PubMed  CAS  Google Scholar 

  • Nienaber, A., Hennecke, H., and Fischer, H. M. (2001). Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum. Mol. Microbiol., 41, 787-800.

    PubMed  CAS  Google Scholar 

  • Nogales, J., Campos, R., Ben Abdelkhalek, H., Olivares, J., Lluch, C., and Sanjuan, J. (2002). Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol. Plant-Microbe Interact., 15, 225-232.

    PubMed  CAS  Google Scholar 

  • O’Gara, F., Manian, S., and Meade, J. (1984). Isolation of an Asm- mutant of Rhizobium japonicum defective in N2 fixation. FEMS Microbiol. Lett., 24, 241-245.

    CAS  Google Scholar 

  • O’Hara, G. W., and Glenn, A. R. (1994). The adaptive acid tolerance response in root-nodule bacteria and Escherichia coli. Arch. Microbiol., 161, 286-292.

    PubMed  CAS  Google Scholar 

  • Ohwada, T., Shirakawa, Y., Kusumoto, M., Masuda, H., and Sato, T. (1999). Susceptibility to hydrogen peroxide and catalase activity of root nodule bacteria. Biosci. Biotechnol. Biochem., 63, 457-462.

    PubMed  CAS  Google Scholar 

  • Oke, V., and Long, S. R. (1999). Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol. Microbiol., 32, 837-849.

    PubMed  CAS  Google Scholar 

  • Olson, J. W., and Maier, R. J. (2000). Dual roles of Bradyrhizobium japonicum nickelin protein in nickel storage and GTP-dependent Ni mobilization. J. Bacteriol., 182, 1702-1705.

    PubMed  CAS  Google Scholar 

  • Oresnik, I. J., Pacarynuk, L. A., O’Brien, S. A. P., Yost, C. K., and Hynes, M. F. (1998). Plasmid-encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: Evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol. Plant-Microbe Interact., 11, 1175-1185.

    CAS  Google Scholar 

  • Oresnik, I. J., Liu, S. L., Yost, C. K., and Hynes, M. F. (2000). Megaplasmid pRme2011a of Sinorhizobium melilotiis not required for viability. J. Bacteriol., 182, 3582-3586.

    PubMed  CAS  Google Scholar 

  • Osteras, M., Finan, T. M., and Stanley, J. (1991). Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase - gluconeogenesis and host-dependent symbiotic phenotype. Mol. Gen. Genet., 230, 257-269.

    PubMed  CAS  Google Scholar 

  • Osteras, M., Driscoll, B. T., and Finan, T. M. (1995). Molecular and expression analysis of theRhizobium melilotiphosphoenolpyruvate carboxykinase (pckA) gene. J. Bacteriol., 177, 1452-1460.

    PubMed  CAS  Google Scholar 

  • Pardo, M. A., Lagunez, J., Miranda, J., and Martinez, E. (1994). Nodulating ability of Rhizobium tropici is conditioned by a plasmid-encoded citrate synthase. Mol. Microbiol., 11, 315-321.

    PubMed  CAS  Google Scholar 

  • Parke, D., Rivelli, M., and Ornston, L. N. (1985). Chemotaxis to aromatic and hydroaromatic acids - comparison of Bradyrhizobium japonicum and Rhizobium trifolii. J. Bacteriol., 163, 417-422.

    PubMed  CAS  Google Scholar 

  • Patriarca, E. J., Tate, R., and Iaccarino, M. (2002). Key role of bacterial NH4 + metabolism in Rhizobium-plant symbiosis. Microbiol. Mol. Biol. Rev., 66, 203-222.

    PubMed  CAS  Google Scholar 

  • Pellock, B. J., Teplitski, M., Boinay, R. P., Bauer, W. D., and Walker, G. C. (2002). A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J. Bacteriol., 184, 5067-5076.

    Google Scholar 

  • Pfeffer, P. E., Becard, G., Rolin, D. B., Uknalis, J., Cooke, P., and Tu, S. (1994). In vivo nuclear magnetic resonance study of the osmoregulation of phosphocholine-substituted beta-1,3;1,6 cyclic glucan and its associated carbon metabolism in Bradyrhizobium japonicum USDA 110. Appl. Environ. Microbiol., 60, 2137-2146.

    PubMed  CAS  Google Scholar 

  • Phillips, D. A., Sande, E. S., Vriezen, J. A. C., de Bruijn, F. J., Le Rudulier, D., and Joseph, C. M. (1998). A new genetic locus in Sinorhizobium meliloti is involved in stachydrine utilization. Appl. Environ. Microbiol., 64, 3954-3960.

    PubMed  CAS  Google Scholar 

  • Platero, R., Peixoto, L., O’Brian, M. R., and Fabiano, E. (2004). Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti. Appl. Environ. Microbiol., 70, 4349-4355.

    PubMed  CAS  Google Scholar 

  • Polcyn, W., Lucinski, R., Tom-Petersen, A., Leser, T. D., Marsh, T. L., and Nybroe, O. (2003). Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). FEMS Microbiol. Evol., 46, 53-62.

    Google Scholar 

  • Poole, P. S., Dilworth, M. J., and Glenn, A. R. (1984). Acquisition of aspartase activity in Rhizobium leguminosarum WU235. J. Gen. Microbiol., 130, 881-886.

    CAS  Google Scholar 

  • Poole, P. S., Franklin, M., Glenn, A. R., and Dilworth, M. J. (1985). The transport of L-glutamate by Rhizobium leguminosarum involves a common amino acid carrier. J. Gen. Microbiol., 131, 1441-1448.

    CAS  Google Scholar 

  • Poole, P. S., Blyth, A., Reid, C. J., and Walters, K. (1994). myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv viciae. Microbiology, 140, 2787-2795.

    CAS  Google Scholar 

  • Poole, P. S., Reid, C., East, A. K., Allaway, D., Day, M., and Leonard, M. (1999). Regulation of the mdh-sucCDAB operon in Rhizobium leguminosarum. FEMS Microbiol. Lett., 176, 247-255.

    CAS  Google Scholar 

  • Poole, P. S., and Allaway, D. A. (2000). Carbon and nitrogen metabolism in Rhizobium. Adv. Microb. Physiol., 43, 117-163.

    PubMed  CAS  Google Scholar 

  • Povolo, S., Tombolini, R., Morea, A., Anderson, A. J., Casella, S., and Nuti, M. P. (1994). Isolation and characterization of mutants of Rhizobium meliloti unable to synthesize poly-β -hydroxybutyrate. Can. J. Microbiol., 40, 823-829.

    CAS  Google Scholar 

  • Povolo, S., and Casella, S. (2000). A critical role for aniA in energy-carbon flux and symbiotic nitrogen fixation in Sinorhizobium meliloti. Arch. Microbiol., 174, 42-49.

    PubMed  CAS  Google Scholar 

  • Prell, J., Boesten, B., Poole, P. S., and Priefer, U. B. (2002). The Rhizobium leguminosarum bv. viciaeVF39 γ -aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. Microbiology, 148, 615-623.

    PubMed  CAS  Google Scholar 

  • Priefer, U. B., Aurag, J., Boesten, B., Bouhmouch, I., Defez, R., Filali-Maltouf, A., et al. (2001). Characterisation of Phaseolus symbionts isolated from Mediterranean soils and analysis of genetic factors related to pH tolerance. J. Biotechnol., 91, 223-236.

    PubMed  CAS  Google Scholar 

  • Primm, T. P., Andersen, S. J., Mizrahi, V., Avarbock, D., Rubin, H., and Barry, III, C. E. (2000). The stringent response of Mycobacterium tuberculosis is required for long-term survival. J. Bacteriol., 182, 4889-4898.

    PubMed  CAS  Google Scholar 

  • Primrose, S. B., and Ronson, C. W. (1980). Polyol metabolism by Rhizobium trifolii. J. Bacteriol., 141, 1109-1114.

    PubMed  CAS  Google Scholar 

  • Putnoky, P., Kereszt, A., Nakamura, T., Endre, G., Grosskopf, E., et al. (1998). The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol. Microbiol., 28, 1091-1101.

    PubMed  CAS  Google Scholar 

  • Qi, Z. H., and O’Brian, M. R. (2002). Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol. Cell, 9, 155-162.

    PubMed  CAS  Google Scholar 

  • Rao, J. R., and Cooper, J. E. (1994). Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J. Bacteriol., 176, 5409-5413.

    PubMed  CAS  Google Scholar 

  • Rao, J. R., and Cooper, J. E. (1995). Soybean nodulating rhizobia modify nodgene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Mol. Plant-Microbe Interact., 8, 855-862.

    CAS  Google Scholar 

  • Rao, J. R., Cooper, J. E., Everaert, E. S. W., and DeCooman, L. (1996). Assimilation of nod gene inducer C-14-naringenin and the incorporation of labelled carbon atoms into the acyl side chain of a host-specific nod factor produced by Rhizobium leguminosarum bv viciae. Plant Soil, 186, 63-67.

    CAS  Google Scholar 

  • Rastogi, V. K., and Watson, R. J. (1991). Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti. J. Bacteriol., 173, 2879-2887.

    PubMed  CAS  Google Scholar 

  • Reeve, W. G., Tiwari, R. P., Dilworth, M. J., and Glenn, A. R. (1993). Calcium affects the growth and survival of Rhizobium meliloti. Soil Biol. Biochem., 25, 581-586.

    Google Scholar 

  • Reeve, W. G., Dilworth, M. J., Tiwari, R. P., and Glenn, A. R. (1997). Regulation of exopolysaccharide production in Rhizobium leguminosarum biovar viciae WSM710 involves exoR. Microbiology, 143, 1951-1958.

    PubMed  CAS  Google Scholar 

  • Reeve, W. G., Tiwari, R. P., Wong, C. M., Dilworth, M. J., and Glenn, A. R. (1998). The transcriptional regulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by low pH and other stresses. Microbiology, 144, 3335-3342.

    PubMed  CAS  Google Scholar 

  • Reeve, W. G., Tiwari, R. P., Worsley, P. S., Dilworth, M. J., Glenn, A. R., and Howieson, J. G. (1999). Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology, 145, 1307-1316.

    PubMed  CAS  Google Scholar 

  • Reeve, W. G., Tiwari, R. P., Kale, N. B., Dilworth, M. J., and Glenn, A. R. (2002). ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol. Microbiol., 43, 981-991.

    PubMed  CAS  Google Scholar 

  • Reeve, W. G., Tiwari, R. P., Guerreiro, N., Stubbs, J., Dilworth, M. J., et al. (2004). Probing for pH-regulated proteins in Sinorhizobium medicae using proteomic analysis. J. Mol. Microbiol. Biotechnol., 7, 140-147.

    PubMed  CAS  Google Scholar 

  • Reid, C. J., Walshaw, D. L., and Poole, P. S. (1996). Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons. Microbiology, 142, 2603-2612.

    PubMed  CAS  Google Scholar 

  • Riccillo, P. M., Muglia, C. I., de Bruijn, F. J., Roe, A. J., Booth, I. R., and Aguilar, O. M. (2000). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J. Bacteriol., 182, 1748-1753.

    PubMed  CAS  Google Scholar 

  • Richardson, J. S., Hynes, M. F., and Oresnik, I. J. (2004). A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv.trifolii. J. Bacteriol., 186, 8433-8442.

    PubMed  CAS  Google Scholar 

  • Robson, A. D., and Loneragan, J. (1970). Nodulation and growth of Medicago truncatula on acid soils. II Colonization of acid soils by Rhizobium meliloti. Aust. J. Agric. Res., 21, 435-445.

    Google Scholar 

  • Rodelas, B., Lithgow, J. K., Wisniewski-Dyé, F., Hardman, A., Wilkinson, A., et al. (1999). Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J. Bacteriol., 181, 3816-3823.

    PubMed  CAS  Google Scholar 

  • Roessler, M., and Müller, V. (2001). Osmoadaptation in bacteria and archaea: Common principles and differences. Environ. Microbiol., 3, 743-754.

    CAS  Google Scholar 

  • Roest, H. P., Goosen-de Roo, L., Wijffelman, C. A., De Maagd, R. A., and Lugtenberg, B. J. J. (1995). Outer-membrane protein changes during bacteroid development are independent of nitrogen-fixation and differ between indeterminate and determinate nodulating host plants of Rhizobium leguminosarum. Mol. Plant-Microbe Interact., 8, 14-22.

    CAS  Google Scholar 

  • Ronson, C. W., and Primrose, S. B. (1979). Carbohydrate metabolism in Rhizobium trifolii: Identification and symbiotic properties of mutants. J. Gen. Microbiol., 112, 77-88.

    CAS  Google Scholar 

  • Rosemeyer, V., Michiels, J., Verreth, C., and Vanderleyden, J. (1998). luxI- and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J. Bacteriol., 180, 815-821.

    PubMed  CAS  Google Scholar 

  • Rosenblueth, M., Hynes, M. F., and Martínez-Romero, E. (1998). Rhizobium tropici teu genes involved in specific uptake of Phaseolus vulgaris bean exudate compounds. Mol. Gen. Genet., 258, 587-598.

    PubMed  CAS  Google Scholar 

  • Rosendahl, L., Dilworth, M. J., and Glenn, A. R. (1992). Exchange of metabolites across the peribacteroid membrane in pea root nodules. J. Plant Physiol., 139, 635-638.

    CAS  Google Scholar 

  • Ruberg, S., Tian, Z. X., Krol, E., Linke, B., Meyer, F., et al. (2003). Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: Genome-wide profiling of osmoadaptive gene expression. J. Biotechnol., 106, 255-268.

    PubMed  CAS  Google Scholar 

  • Rusanganwa, E., and Gupta, R. S. (1993). Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti. Gene, 126, 67-75.

    PubMed  CAS  Google Scholar 

  • Salminen, S. O., and Streeter, J. G. (1987). Involvement of glutamate in the respiratory metabolism of Bradyrhizobium japonicum bacteroids. J. Bacteriol., 169, 495-499.

    PubMed  CAS  Google Scholar 

  • Salminen, S. O., and Streeter, J. G. (1990). Factors contributing to the accumulation of glutamate in Bradyrhizobium japonicum bacteroids under microaerobic conditions. J. Gen. Microbiol., 136, 2119-2126.

    CAS  Google Scholar 

  • Santos, R., Hérouart, D., Sigaud, S., Touati, D., and Puppo, A. (2001). Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol. Plant-Microbe Interact., 14, 86-89.

    PubMed  CAS  Google Scholar 

  • Scharf, B., Schuster-Wolff-Bühring, H., Rachel, R., and Schmitt, R. (2001). Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: Importance of flagellin A for flagellar filament structure and transcriptional regulation. J. Bacteriol., 183, 5334-5342.

    PubMed  CAS  Google Scholar 

  • Scharf, B. (2002). Real-time imaging of fluorescent flagellar filaments ofRhizobium lupini H13-3: flagellar rotation and pH-induced polymorphic transitions. J. Bacteriol., 184, 5979-5986.

    PubMed  CAS  Google Scholar 

  • Scharf, B., and Schmitt, R. (2002). Sensory transduction to the flagellar motor of Sinorhizobium meliloti. J. Mol. Microbiol. Biotechnol., 4, 183-186.

    PubMed  CAS  Google Scholar 

  • Schmitt, R. (2002). Sinorhizobial chemotaxis: A departure from the enterobacterial paradigm. Microbiology, 148, 627-631.

    PubMed  CAS  Google Scholar 

  • Schripsema, J., de Rudder, K. E. E., van Vliet, T. B., Lankhorst, P. P., de Vroom, E., et al. (1996). Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J. Bacteriol., 178, 366-371.

    Google Scholar 

  • Schwartz, C. J., Giel, J. L., Patschkowski, T., Luther, C., Ruzicka, F. J., et al. (2001). IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. USA., 98, 14895-14900.

    PubMed  CAS  Google Scholar 

  • Slonczewski, J. L., and Foster, J. W. (1996). pH-regulated genes and survival at extreme pH. In F. C. C. E. Neidhardt (Ed.), Escherichia coliandSalmonellacellular and molecular biology. (pp. 283-306). Washington, D.C.: American Society for Microbiology Press.

    Google Scholar 

  • Smit, G., Swart, S., Lugtenberg, B. J., and Kijne, J. W. (1992). Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol. Microbiol., 6, 2897-2903.

    PubMed  CAS  Google Scholar 

  • Smith, L. T., Pocard, J. A., Bernard, T., and Le Rudulier, D. (1988). Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J. Bacteriol., 170, 3142-3149.

    PubMed  CAS  Google Scholar 

  • Smith, L. T., and Smith, G. M. (1989). An osmoregulated dipeptide in stressed Rhizobium meliloti. J. Bacteriol., 171, 4714-4717.

    PubMed  CAS  Google Scholar 

  • Smith, M. T., and Emerich, D. W. (1993a). Alanine dehydrogenase from soybean nodule bacteroids: purification and properties. Arch. Biochem. Biophys., 304, 379-385.

    CAS  Google Scholar 

  • Smith, M. T., and Emerich, D. W. (1993b). Alanine dehydrogenase from soybean nodule bacteroids - kinetic mechanism and pH studies. J. Biol. Chem., 268, 10746-10753.

    CAS  Google Scholar 

  • Soedarjo, M., and Borthakur, D. (1996). Mimosine produced by the tree-legume Leucaena provides growth advantages to some Rhizobium strains that utilize it as a source of carbon and nitrogen. Plant Soil, 186, 87-92.

    CAS  Google Scholar 

  • Soedarjo, M., and Borthakur, D. (1998). Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobiumstrains. Soil Biol. Biochem., 30, 1605-1613.

    CAS  Google Scholar 

  • Sourjik, V., and Schmitt, R. (1996). Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol. Microbiol., 22, 427-436.

    PubMed  CAS  Google Scholar 

  • Sourjik, V., Sterr, W., Platzer, J., Bos, I., Haslbeck, M., and Schmitt, R. (1998). Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium melilotichromosome. Gene, 223, 283-290.

    PubMed  CAS  Google Scholar 

  • Sourjik, V., Muschler, P., Scharf, B., and Schmitt, R. (2000). VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. J. Bacteriol., 182, 782-788.

    PubMed  CAS  Google Scholar 

  • Sourjik, V., and Berg, H. C. (2004). Functional interactions between receptors in bacterial chemotaxis. Nature, 428, 437-441.

    PubMed  CAS  Google Scholar 

  • Soussi, M., Santamaria, M., Ocana, A., and Lluch, C. (2001). Effects of salinity on protein and lipopolysaccharide pattern in a salt-tolerant strain of Mesorhizobium ciceri. J. Appl. Microbiol., 90, 476-481.

    PubMed  CAS  Google Scholar 

  • Stanfield, S. W., Ielpi, L., O’Brochta, D., Helinski, D. R., and Ditta, G. S. (1988). The ndvA gene product of Rhizobium meliloti is required for beta-(1,2)glucan production and has homology to the ATP-binding export protein HlyB. J. Bacteriol., 170, 3523-3530.

    PubMed  CAS  Google Scholar 

  • Steele, H. L., Werner, D., and Cooper, J. E. (1999). Flavonoids in seed and root exudates of Lotus pedunculatus and their biotransformation by Mesorhizobium loti. Physiol. Plant., 107, 251-258.

    CAS  Google Scholar 

  • Stowers, M. D. (1985). Carbon metabolism in Rhizobium species. Annu. Rev. Microbiol., 39, 89-108.

    PubMed  CAS  Google Scholar 

  • Streeter, J. G., and Salminen, S. O. (1990). Periplasmic metabolism of glutamate and aspartate by intact Bradyrhizobium japonicum bacteroids. Biochim. Biophys. Acta, 1035, 257-265.

    PubMed  CAS  Google Scholar 

  • Streit, W. R., Joseph, C. M., and Phillips, D. A. (1996). Biotin and other water-soluble vitamins are key growth-factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol. Plant-Microbe Interact., 9, 330-338.

    PubMed  CAS  Google Scholar 

  • Stripf, R., and Werner, D. (1978). Differentiation of Rhizobium japonicum, II. Enzymatic activities in bacteroids and plant cytoplasm during the development of nodules of Glycine max. Z. Naturforsch., 33c, 373-381.

    CAS  Google Scholar 

  • Sullivan, J. T., Brown, S. D., Yocum, R. R., and Ronson, C. W. (2001). The bio operon on the acquired symbiosis island of Mesorhizobium sp strain R7A includes a novel gene involved in pimeloyl-CoA synthesis. Microbiology, 147, 1315-1322.

    PubMed  CAS  Google Scholar 

  • Talibart, R., Jebbar, M., Gouesbet, G., Himdi-Kabbab, S., Wroblewski, H., et al. (1994). Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J. Bacteriol., 176, 5210-5217.

    PubMed  CAS  Google Scholar 

  • Taté, R., Riccio, A., Merrick, M., and Patriarca, E. J. (1998). The Rhizobium etli amtB gene coding for an NH4 + transporter is down-regulated early during bacteroid differentiation. Mol. Plant-Microbe Interact., 11, 188-198.

    PubMed  Google Scholar 

  • Taté, R., Cermola, M., Riccio, A., Iaccarino, M., Merrick, M., Favre, R., and Patriarca, E. J. (1999). Ectopic expression of the Rhizobium etli amtB gene affects the symbiosome differentiation process and nodule development. Mol. Plant-Microbe Interact., 12, 515-525.

    Google Scholar 

  • Taté, R., Ferraioli, S., Filosa, S., Cermola, M., Riccio, A., et al. (2004). Glutamine utilization by Rhizobium etli. Mol. Plant-Microbe Interact., 17, 720-728.

    PubMed  Google Scholar 

  • Tepfer, D., Goldmann, A., Pamboukdjian, N., Maille, M., Lepingle, A., et al. (1988). A plasmid of Rhizobium meliloti41 encodes catabolism of two compounds from root exudate ofCalystegium sepium. J. Bacteriol., 170, 1153-1161.

    PubMed  CAS  Google Scholar 

  • Thony-Meyer, L., and Kunzler, P. (1996). The Bradyrhizobium japonicum aconitase gene (acnA) is important for free-living growth but not for an effective root-nodule symbiosis. J. Bacteriol., 178, 6166-6172.

    PubMed  CAS  Google Scholar 

  • Thorne, S. H., and Williams, H. D. (1997). Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: Analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. J. Bacteriol., 179, 6894-6901..

    PubMed  CAS  Google Scholar 

  • Tiwari, R. P., Reeve, W. G., and Glenn, A. R. (1992). Mutations conferring acid-sensitivity in the acid-tolerant strains of Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viceae WSM710. FEMS Microbiol. Lett., 100, 107-112.

    CAS  Google Scholar 

  • Tiwari, R. P., Reeve, W. G., Dilworth, M. J., and Glenn, A. R. (1996a). An essential role for actA in acid tolerance of Rhizobium meliloti. Microbiology, 142, 601-610.

    CAS  Google Scholar 

  • Tiwari, R. P., Reeve, W. G., Dilworth, M. J., and Glenn, A. R. (1996b). Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology, 142, 1693-1704.

    CAS  Google Scholar 

  • Tiwari, R. P., Reeve, W. G., Fenner, B. J., Dilworth, M. J., Glenn, A. R., and Howieson, J. G. (2004). Probing for pH-regulated genes in Sinorhizobium medicae using transcriptional analysis. J. Mol. Microbiol. Biotechnol., 7, 133-139.

    PubMed  CAS  Google Scholar 

  • Todd, J. D., Wexler, M., Sawers, G., Yeoman, K. H., Poole, P. S., and Johnston, A. W. B. (2002). RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology, 148, 4059-4071.

    PubMed  CAS  Google Scholar 

  • Todd, J. D., Sawers, G., and Johnston, A. W. B. (2005). Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum. Mol. Gen. Genom., 273, 197-206.

    CAS  Google Scholar 

  • Tomaszewska, B., and Werner, D. (1995). Purification and properties of NAD-dependent and NADP-dependent malic enzymes from Bradyrhizobium japonicum bacteroids. J. Plant Physiol., 146, 591-595.

    CAS  Google Scholar 

  • Tombolini, R., and Nuti, M. P. (1989). Poly(β -hydroyxalkanoate) biosynthesis and accumulation by different Rhizobium species. FEMS Microbiol. Lett., 60, 299-304.

    CAS  Google Scholar 

  • Trachtenberg, S., DeRosier, D. J., and Macnab, R. M. (1987). 3-Dimensional structure of the complex flagellar filament of Rhizobium lupini and its relation to the structure of the plain filament. J. Mol. Biol., 195, 603-620.

    PubMed  CAS  Google Scholar 

  • Trzebiatowski, J. R., Ragatz, D. M., and de Bruijn, F. J. (2001). Isolation and regulation of Sinorhizobium meliloti1021 loci induced by oxygen limitation. Appl. Environ. Microbiol., 67, 3728-3731.

    PubMed  CAS  Google Scholar 

  • Tsien, H. C., and Schmidt, E. L. (1977). Polarity in the exponential phase Rhizobium japonicum cell. Can. J. Microbiol., 23, 1274-1284.

    PubMed  CAS  Google Scholar 

  • Tun-Garrido, C., Bustos, P., González, V., and Brom, S. (2003). Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J. Bacteriol., 185, 1681-1692.

    PubMed  CAS  Google Scholar 

  • Uchiumi, T., Ohwada, T., Itakura, M., Mitsui, H., Nukui, N., et al. (2004). Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J. Bacteriol., 186, 2439-2448.

    PubMed  CAS  Google Scholar 

  • Ucker, D. S., and Signer, E. R. (1978). Catabolite-repression-like phenomenon in Rhizobium meliloti. J. Bacteriol., 136, 1197-1200.

    PubMed  CAS  Google Scholar 

  • Ugalde, J. E., Lepek, V., Uttaro, A., Estrella, J., Iglesias, A., and Ugalde, R. A. (1998). Gene organization and transcription analysis of the Agrobacterium tumefaciens glycogen (glg) operon: Two transcripts for the single phosphoglucomutase gene. J. Bacteriol., 180, 6557-6564.

    PubMed  CAS  Google Scholar 

  • Urban, J. E., and Dazzo, F. B. (1982). Succinate-induced morphology of Rhizobium trifolii 0403 resembles that of bacteroids in clover nodules. Appl. Environ. Microbiol., 44, 219-226.

    PubMed  Google Scholar 

  • Uttaro, A. D., and Ugalde, R. A. (1994). A chromosomal cluster of genes encoding ADP-glucose synthetase, glycogen-synthase and phosphoglucomutase in Agrobacterium tumefaciens. Gene, 150, 117-122.

    PubMed  CAS  Google Scholar 

  • Uttaro, A. D., Ugalde, R. A., Preiss, J., and Iglesias, A. A. (1998). Cloning and expression of the glgC gene from Agrobacterium tumefaciens: Purification and characterization of the ADPglucose synthetase. Arch. Biochem. Biophys., 357, 13-21.

    PubMed  CAS  Google Scholar 

  • Van Egeraat, A. W. S. M. (1975a). The possible role of homoserine in the development ofRhizobium leguminosarum in the rhizosphere of pea seedlings. Plant Soil, 42, 380-387.

    Google Scholar 

  • Van Egeraat, A. W. S. M. (1975b). The growth of Rhizobium leguminosarum on the root surface and in the rhizosphere of pea seedlings in relation to root exudates. Plant Soil, 42, 367-379.

    Google Scholar 

  • Van de Broek, A., and Vanderleyden, J. (1995). The role of bacterial motility, chemotaxis, and attachment in bacteria plant interactions. Mol. Plant-Microbe Interact., 8, 800-810.

    Google Scholar 

  • Vargas, M. C., Encarnación, S., Dávalos, A., Reyes-Pérez, A., Mora, Y., et al. (2003). Only one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. Microbiology, 149, 1165-1176.

    CAS  Google Scholar 

  • Vincent, J. M. (1962). Influence of calcium and magnesium on the growth of Rhizobium. J. Gen. Microbiol., 28, 658-663.

    Google Scholar 

  • Vinuesa, P., Neumann-Silkow, F., Pacios-Bras, C., Spaink, H. P., Martínez-Romero, E., and Werner, D. (2003). Genetic analysis of a pH-regulated operon from Rhizobium tropici CIAT899 involved in acid tolerance and nodulation competitiveness. Mol. Plant-Microbe Interact., 16, 159-168.

    PubMed  CAS  Google Scholar 

  • Voegele, R. T., Bardin, S., and Finan, T. M. (1997). Characterization of the Rhizobium (Sinorhizobium) meliloti high- and low-affinity phosphate uptake systems. J. Bacteriol., 179, 7226-7232.

    PubMed  CAS  Google Scholar 

  • Wagner, S. C., Skipper, H. D., and Hartel, P. G. (1995). Medium to study carbon utilization by bradyrhizobium strains. Can. J. Microbiol., 41, 633-636.

    CAS  Google Scholar 

  • Wallington, E. J., and Lund, P. A. (1994). Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology, 140, 113-122.

    PubMed  CAS  Google Scholar 

  • Walshaw, D. L., and Poole, P. S. (1996). The general L-amino acid permease of Rhizobium leguminosarum is an ABC uptake system that also influences efflux of solutes. Mol. Microbiol., 21, 1239-1252.

    PubMed  CAS  Google Scholar 

  • Walshaw, D. L., Lowthorpe, S., East, A., and Poole, P. S. (1997a). Distribution of a sub-class of bacterial ABC polar amino acid transporter and identification of an N-terminal region involved in solute specificity. FEBS Lett., 414, 397-401.

    CAS  Google Scholar 

  • Walshaw, D. L., Reid, C. J., and Poole, P. S. (1997b). The general amino acid permease of Rhizobium leguminosarum strain 3841 is negatively regulated by the Ntr system. FEMS Microbiol. Lett., 152, 57-64.

    CAS  Google Scholar 

  • Walshaw, D. L., Wilkinson, A., Mundy, M., Smith, M., and Poole, P. S. (1997c). Regulation of the TCA cycle and the general amino acid permease by overflow metabolism in Rhizobium leguminosarum. Microbiology, 143, 2209-2221.

    CAS  Google Scholar 

  • Wang, P., Ingram-Smith, C., Hadley, J. A., and Miller, K. J. (1999). Cloning, sequencing, and characterization of the cgmB gene of Sinorhizobium meliloti involved in cyclic β -glucan biosynthesis. J. Bacteriol., 181, 4576-4583.

    PubMed  CAS  Google Scholar 

  • Watkin, D. (1997). So you want to train in general surgery? Brit. J. Hosp. Med., 57, 569-570.

    Google Scholar 

  • Watson, R. J., Rastogi, V. K., and Chan, Y. K. (1993). Aspartate transport in Rhizobium meliloti. J. Gen. Microbiol., 139, 1315-1323.

    CAS  Google Scholar 

  • Wei, X., and Bauer, W. D. (1998). Starvation-induced changes in motility, chemotaxis, and flagellation of Rhizobium meliloti. Appl. Environ. Microbiol., 64, 1708-1714.

    PubMed  CAS  Google Scholar 

  • Wei, X. M., and Bauer, W. D. (1999). Tn5-induced and spontaneous switching of Sinorhizobium melilotito faster-swarming behavior. Appl. Environ. Microbiol., 65, 1228-1235.

    PubMed  CAS  Google Scholar 

  • Wells, D. H., and Long, S. R. (2002). The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. Mol. Microbiol., 43, 1115-1127.

    PubMed  CAS  Google Scholar 

  • Wells, D. H., and Long, S. R. (2003). Mutations in rpoBC suppress the defects of a Sinorhizobium meliloti relA mutant. J. Bacteriol., 185, 5602-5610.

    PubMed  CAS  Google Scholar 

  • Wexler, M., Gordon, D. M., and Murphy, P. J. (1996). Genetic-relationships among rhizopine-producing Rhizobium strains. Microbiology, 142, 1059-1066.

    CAS  Google Scholar 

  • Wexler, M., Todd, J. D., Kolade, O., Bellini, D., Hemmings, A. M., et al. (2003). Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum. Microbiology, 149, 1357-1365.

    PubMed  CAS  Google Scholar 

  • Wilkinson, A., Danino, V., Wisniewski-Dyé, F., Lithgow, J. K., and Downie, J. A. (2002). N-acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J. Bacteriol., 184, 4510-4519.

    PubMed  CAS  Google Scholar 

  • Willis, L. B., and Walker, G. C. (1999). A novel Sinorhizobium meliloti operon encodes an α -glucosidase and a periplasmic-binding-protein-dependent transport system for α -glucosides. J. Bacteriol., 181, 4176-4184.

    PubMed  CAS  Google Scholar 

  • Wisniewski-Dyé, F., and Downie, J. A. (2002). Quorum-sensing in Rhizobium. Antonie van Leeuwenhoek, 81, 397-407.

    PubMed  Google Scholar 

  • Wright, E. L., Deakin, W. J., and Shaw, C. H. (1998). A chemotaxis cluster from Agrobacterium tumefaciens. Gene, 220, 83-89.

    PubMed  CAS  Google Scholar 

  • Yost, C. K., Rochepeau, P., and Hynes, M. F. (1998). Rhizobium leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology, 144, 1945-1956.

    PubMed  CAS  Google Scholar 

  • Yost, C. K., and Hynes, M. F. (2000). Rhizobial motility and chemotaxis: Molecular biology and ecological role. In E. Triplett (Ed.), Prokaryotic nitrogen fixation: A model system of a biological process. (pp. 237-250).Wymondham, UK: Horizon Scientific Press.

    Google Scholar 

  • Yost, C. K., Clark, K. T., Del Bel, K. L., and Hynes, M. F. (2003). Characterization of the nodulation plasmid encoded chemoreceptor gene mcpG from Rhizobium leguminosarum. BMC Microbiol. http://www.biomedcentral.com/1471-2180/3/1.

    Google Scholar 

  • Yost, C. K., Del Bel, K. L., Quandt, J., and Hynes, M. F. (2004). Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule. Arch. Microbiol., 182, 505-513.

    PubMed  CAS  Google Scholar 

  • Yurgel, S., Mortimer, M. W., Rogers, K. N., and Kahn, M. L. (2000). New substrates for the dicarboxylate transport system of Sinorhizobium meliloti. J. Bacteriol., 182, 4216-4221.

    PubMed  CAS  Google Scholar 

  • Zahran, H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev., 63, 968-989.

    PubMed  CAS  Google Scholar 

  • Zevenhuizen, L. P. T. M. (1981). Cellular glycogen, β -1,2-glucan, poly-β -hydroxybutyric acid and extracellular polysaccharides in fast growing species of Rhizobium. Antonie van Leeuwenhoek, 47, 481-497.

    PubMed  CAS  Google Scholar 

  • Zlotnikov, K. M., Marunov, S. K., and Khmelnitskii, M. I. (1984). Disturbance in assimilation of fixed nitrogen by soybean plants in symbiosis with the asp- bacterium Rhizobium japonicum. Dokl. Akad. Nauk SSSR., 275, 189-192.

    CAS  Google Scholar 

  • Zorreguieta, A., Geremia, R. A., Cavaignac, S., Cangelosi, G. A., Nester, E. W., and Ugalde, R. A. (1988). Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol. Plant-Microbe Interact., 1, 121-127.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Poole, P.S., Hynes, M.F., Johnston, A.W.B., Tiwari, R.P., Reeve, W.G., Downie, J.A. (2008). Physiology Of Root-Nodule Bacteria. In: Dilworth, M.J., James, E.K., Sprent, J.I., Newton, W.E. (eds) Nitrogen-fixing Leguminous Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3548-7_9

Download citation

Publish with us

Policies and ethics