Skip to main content

Carbon and Nitrogen Metabolism in Legume Nodules

  • Chapter

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 7))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins, C. A., Sanford, P. J., Storer, P. J., and Pate, J. S. (1988). Inhibition of nodule functioning in cowpea by a xanthine oxidoreductase inhibitor, allopurinol. Plant Physiol., 88, 1229-1234.

    PubMed  CAS  Google Scholar 

  • Atkins, C. A., and Smith, P. M. C. (2000). Ureide synthesis in legume nodules. In E. J. Triplett (Ed.), Prokaryotic nitrogen fixation: A model system for the analysis of a biological process (pp. 559-587). Wymondham, UK: Horizon Scientific Press.

    Google Scholar 

  • Atkins, C. A., Smith, P., Mann, A., and Thumfort, P. (2001). Localization of carbonic anhydrase in legume nodules. Plant Cell Environ., 24, 317-326.

    CAS  Google Scholar 

  • Carvalho, H., Lescure, N., de Billy, F., Chabaud, M., Lima, L., Salema, R., et al. (2000). Cellular expression and regulation of the Medicago truncatula cytosolic glutamine synthetase genes in root nodules. Plant Mol. Biol., 42, 741-756.

    PubMed  CAS  Google Scholar 

  • Carvalho, H. G., Lopes-Cardoso, I. A., Lima, L. M., Melo, P. M., and Cullimore, J. V. (2003). Nodule specific modulation of glutamine synthetase in transgenic Medicago truncatula leads to inverse alterations in asparagine synthetase expression. Plant Physiol., 133, 243-252.

    PubMed  CAS  Google Scholar 

  • Catalano, C., Lane, W. S., and Sherrier, D. J. (2004). Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules. Electrophoresis, 25, 519-531.

    PubMed  CAS  Google Scholar 

  • Chapman, K. A., Delauney, A. J., Kim, J. H., and Verma, D. P. S. (1994). Structural organization of de novo purine biosynthesis enzymes in plants: 5-aminoimidazole ribonucleotide carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide synthetase cDNAs from Vigna aconitifolia. Plant Mol. Biol., 24, 389-395.

    PubMed  CAS  Google Scholar 

  • Chen, F. L., and Cullimore, J. V. (1988). Two isoenzymes of NADH-dependent glutamate synthase in root nodules of Phaseolus vulgaris L.: Purification, properties and activity changes during nodule development. Plant Physiol., 88, 1411-1417.

    PubMed  CAS  Google Scholar 

  • Chichkova, S., Arellano, J., Vance, C. P., and Hernandez, G. (2001). Transgenic tobacco plants that overexpress alfalfa NADH-glutamate synthase have higher carbon and nitrogen content. J. Exp. Bot., 52, 2079-2087.

    PubMed  CAS  Google Scholar 

  • Chollet, R., Vidal, J., and O’Leary, M. H. (1996). Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, 273-298.

    PubMed  CAS  Google Scholar 

  • Colebatch, G., Desbrosses, G., Ott, T., Krusell, L., Montanari, O., Kloska, S., et al. (2004). Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J., 39, 487-512.

    PubMed  Google Scholar 

  • Copeland, L., Lee, H.-S., and Cowlishaw, N. (1995). Carbon metabolism in chickpea nodules. Soil Biol. Biochem., 27, 381-385.

    CAS  Google Scholar 

  • Copeland, L., Vella, J., and Hong, Z.-Q. (1989). Enzymes of carbohydrate metabolism in soybean nodules. Phytochemistry, 28, 57-61.

    CAS  Google Scholar 

  • Coruzzi, G. (2003). Primary N-assimilation into amino acids in Arabidopsis. In C. R. Somerville and E. M. Meyerowitz (Eds.), The Arabidopsis book, Vol. 31 (pp. 1-17). Rockville, MD: American Society of Plant Biologists.

    Google Scholar 

  • Craig, J., Barratt, P., Tatge, H., Dejardin, A., Handley, L., Gardner, C. D., et al. (1999). Mutations at the rug4 locus alter the carbon and nitrogen metabolism of pea plants through an effect on sucrose synthase. Plant J., 17, 353-362.

    CAS  Google Scholar 

  • Cren, M., and Hirel, B. (1999). Glutamine synthetase in higher plants: Regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol., 40, 1187-1193.

    CAS  Google Scholar 

  • Dart, P. (1977). Infection and development of legume nodules. In R. W. F. Hardy and W. S. Silver (Eds.), A treatise on nitrogen fixation, Vol. III, Biology (pp. 367-472). New York, NY: Wiley Interscience.

    Google Scholar 

  • Day, D. A., and Copeland, L. (1991). Carbon metabolism and compartmentation in nitrogen-fixing legume nodules. Plant Physiol. Biochem., 29, 185-201.

    CAS  Google Scholar 

  • de la Pena, T. C., Frugier, F., McKhann, H. I., Bauer, P., Brown, S., Kondorosi, A., et al. (1997). A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development. Plant J., 11, 407-420.

    Google Scholar 

  • Delwiche, C. C. (1970). The nitrogen cycle. Sci. Amer., 223, 136-146.

    Google Scholar 

  • Egli, M. A., Griffith, S. M., Miller, S. S., Anderson, M. P., and Vance, C. P. (1989). Nitrogen assimilating enzyme activities and enzyme protein during development and senescence of effective and plant gene-controlled ineffective alfalfa nodules. Plant Physiol., 91, 898-904.

    PubMed  CAS  Google Scholar 

  • El Yahyaoui, F., Kuster, H., Amor, B. B., Hohnjec, N., Pühler, A., Becker, A., et al. (2004). Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol., 136, 3159-3176.

    PubMed  CAS  Google Scholar 

  • Farnham, M. W., Miller, S. S., Griffith, S. M., and Vance, C. P. (1990). Aspartate aminotransferase in alfalfa root nodules. II. Immunological distinction between two forms of the enzyme. Plant Physiol., 93, 603-610.

    PubMed  CAS  Google Scholar 

  • Fedorova, M., Tikhonovich, I. A., and Vance, C. P. (1999). Expression of C-assimilating enzymes in pea (Pisum sativum) root nodules. In situ localization in effective nodules. Plant Cell Environ., 22, 1249-1262.

    CAS  Google Scholar 

  • Fedorova, M., van de Mortel, J., Matsumoto, P. A., Cho, J., Town, C. D., VandenBosch, K. A., et al. (2002). Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol., 130, 519-537.

    PubMed  CAS  Google Scholar 

  • Fujihara, S., and Yamaguchi, M. (1978). Effects of allopurinol [4-hydroxyprazolo(3, 4-d)pyrimidine] on the metabolism of allantoin in soybean plants. Plant Physiol., 62, 134-138.

    PubMed  CAS  Google Scholar 

  • Galvez, S., Hirsch, A. M., Wycoff, K. L., Hunt, S., Layzell, D. B., Kondorosi, A., et al. (2000). Oxygen regulation of a nodule-located carbonic anhydrase in alfalfa. Plant Physiol., 124, 1059-1068.

    PubMed  CAS  Google Scholar 

  • Gebhartt, C., Oliver, J. E., Forde, B. G., Saarelainen, R., and Miflin, B. J. (1986). Primary structure and differential expression of glutamine synthetase genes in nodules, roots, and leaves of Phaseolus vulgaris. EMBO J., 5, 1429-1435.

    Google Scholar 

  • Gietl, C. (1992). Malate dehydrogenase isoenzymes: Cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. Biochim. Biophys. Acta., 1100, 217-234.

    PubMed  CAS  Google Scholar 

  • Goggin, D. E., Lipscombe, R., Fedorova, E., Millar, A. H., Mann, A., Atkins, C. A., et al. (2003). Dual intracellular localization and targeting of aminoimidazole ribonucleotide synthetase in cowpea. Plant Physiol., 131, 1033-1041.

    PubMed  CAS  Google Scholar 

  • Gordon, A. J., Minchin, F. R., James, C. L., and Komina, O. (1999). Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol., 120, 867-877.

    PubMed  CAS  Google Scholar 

  • Gordon, A. J., Ryle, G. J. A., Mitchell, D. F., and Powell, C. E. (1985). The flux of 14C-labeled photosynthate through soybean root nodules during N2 fixation. J. Exp. Bot., 36, 756-769.

    CAS  Google Scholar 

  • Gregerson, R. G., Miller, S. S., Twary, S. N., Gantt, J. S., and Vance, C. P. (1993). Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules. Plant Cell, 5, 215-226.

    PubMed  CAS  Google Scholar 

  • Groat, R. G., and Vance, C. P. (1982). Root and nodule enzymes of ammonia assimilation in two plant-conditioned symbiotically ineffective genotypes of alfalfa (Medicago sativa L). Plant Physiol., 69, 614-618.

    PubMed  CAS  Google Scholar 

  • Harrison, J., Pou de Crescenzo, M.-A., Sene, O., and Hirel, B. (2003). Does lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of Lotus japonicus? Plant Physiol., 133, 253-262.

    Google Scholar 

  • Hata, S., Izui, K., and Kouchi, H. (1998). Expression of a soybean nodule-enhanced phosphoenolpyruvate carboxylase gene that shows striking similarity to another gene for a house-keeping isoform. Plant J., 13, 267-273.

    PubMed  CAS  Google Scholar 

  • Hohnjec, N., Becker, J. D., Pühler, A., Perlick, A. M., and Küster, H. (1999). Genomic organization and expression properties of the MtSuc1 gene which encodes a nodule enhanced sucrose synthase in the model legume Medicago truncatula. Mol. Gen. Genet., 261, 514-522.

    PubMed  CAS  Google Scholar 

  • Hohnjec, N., Perlick, A. M., Pühler, A., and Küster, H. (2003). The Medicago truncatula sucrose synthase gene MtSuc1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol. Plant-Microbe Interact., 16, 903-915.

    PubMed  CAS  Google Scholar 

  • Hughes, C. A., Beard, H. S., and Matthews, B. F. (1997). Molecular cloning and expression of two cDNAs encoding asparagine synthetase in soybean. Plant Mol. Biol., 33, 301-311.

    PubMed  CAS  Google Scholar 

  • Imsande, J., Berkemeyer, M., Scheibe, R., Schumann, U., Gietl, C., and Palmer, R. G. (2001). A soybean plastid targeted NADH-malate dehydrogenase: Cloning and expression analysis. Amer. J. Bot., 88, 2136-2142.

    CAS  Google Scholar 

  • Ireland, R. J., and Lea, P. J. (1999). The enzymes of glutamine, asparagine, and aspartate metabolism. In B. K. Singh (Ed.), Plant amino acids (pp. 49-109). New York, NY: Marcel Dekker.

    Google Scholar 

  • Irigoyen, J. J., Sanchez-Diaz, M., and Emerich, D. W. (1990). Carbon metabolism enzymes of Rhizobium meliloti cultures and bacteroids and their distribution within alfalfa nodules. Appl. Environ. Microbiol., 56, 2587-2589.

    PubMed  Google Scholar 

  • Journet, E.-P., van Tuinen, D., Gouzy, J., Crespeau, H., Carreau, V., Farmer, M. J., et al. (2002). Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res., 30, 5579-5592.

    PubMed  Google Scholar 

  • Kaiser, B. N., Finnegan, P. M., Tyerman, S. D., Whitehead, L. F., Bergersen, F. J., Day, D. A., et al. (1998). Characterization of an ammonium transport protein from the peribacteroid membrane of soybean nodules. Science, 281, 1202-1206.

    PubMed  CAS  Google Scholar 

  • Kavroulakis, N., Flemetakis, E., Aivalakis, G., Dahiya, P., Brewin, N. J., Fasseas, K., et al. (2003). Tissue distribution and subcellular localization of carbonic anhydrase in mature soybean root nodules indicates a role in CO2 diffusion. Plant Physiol. Biochem., 41, 479-484.

    CAS  Google Scholar 

  • King, B. J., Layzell, D. B., and Canvin, D. T. (1986). The role of dark carbon dioxide fixation in root nodules of soybean. Plant Physiol., 81, 200-205.

    PubMed  CAS  Google Scholar 

  • Knight, T. J., and Langston-Unkefer, P. J. (1988). Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science, 241, 951-954.

    PubMed  CAS  Google Scholar 

  • Komina, O., Zhou, Y., Sarath, G., and Chollet, R. (2002). In vivo and in vitro phosphorylation of membrane and soluble forms of soybean nodule sucrose synthase. Plant Physiol., 129, 1664-1673.

    PubMed  CAS  Google Scholar 

  • Kouchi, H., Fukai, K., Katagiri, H., Minamisawa, K., and Tajima, S. (1988). Isolation and enzymological characterization of infected and uninfected cell protoplasts from root nodules of Glycine max. Physiol. Plant., 73, 327-334.

    CAS  Google Scholar 

  • Lamblin, A.-F. J., Crow, J. A., Johnson, J. E., Silverstein, K. A. T., Kunau, T. M., Kilian, A., et al. (2003). MtDB: A database for personalized data mining of the model legume Medicago truncatula transcriptome. Nucleic Acids Res., 31, 196-201.

    PubMed  CAS  Google Scholar 

  • Lee, H. L., Hur, C.-G., Oh, C. J., Kim, H. B., Park, S. Y., and An, C. S. (2004). Analysis of the root nodule-enhanced transcriptome in soybean. Mol. Cells, 18, 53-62.

    PubMed  Google Scholar 

  • Lee, N. G., Stein, B., Suzuki, H., and Verma, D. P. S. (1993). Antisense expression of nodulin-35 RNA in Vigna aconitifolia root nodules retards peroxisome development and affects nitrogen availability to the plant. Plant J., 3, 599-606.

    PubMed  CAS  Google Scholar 

  • Lodwig, E. M., Hosie, A. H. F., Bourdes, A., Findlay, K., Allaway, D., Karanakaran, R., et al. (2003). Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature, 422, 722-726.

    PubMed  CAS  Google Scholar 

  • Meeks, J. C., Wolk, P. C., Schilling, N., Shaffer, P. W., Avissar, Y., and Chien, W. S. (1978). Initial organic products of fixation of 13N dinitrogen by root nodules of soybean (Glycine max). Plant Physiol., 61, 980-983.

    PubMed  CAS  Google Scholar 

  • Mett, V., Mett, V. L., and Reynolds, P. H. S. (1994). The aspartate aminotransferase-P2 gene from Lupinus angustifolius. Plant Physiol., 106, 1683-1684.

    PubMed  CAS  Google Scholar 

  • Mett, V. L., Podivinsky, E., Tennant, A. M., Lochhead, L. P., Jones, W. T., and Reynolds, P. H. S. (1996). A system for tissue-specific copper-controllable gene expression in transgenic plants: Nodule specific antisense of aspartate aminotransferase P-2. Transgenic Res., 5, 105-113.

    PubMed  CAS  Google Scholar 

  • Miflin, B. J., and Habash, D. Z. (2002). The role of glutamine synthetase and glutamate dehydrogenase in N assimilation and possibilities for improvement in nitrogen utilization by crops. J. Exp. Bot., 53, 979-987.

    PubMed  CAS  Google Scholar 

  • Miller, S. S., Driscoll, B. T., Gregerson, R. G., Gantt, J. S., and Vance, C. P. (1998). Alfalfa malate dehydrogenase (MDH): Molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. Plant J., 15, 173-184.

    PubMed  CAS  Google Scholar 

  • Nakagawa, T., Izumi, T., Banba, M., Umehara, Y., Kouchi, H., Izui, K., and Hata, S. (2003). Characterization and expression analysis of genes encoding phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase of Lotus japonicus, a model legume. Mol. Plant-Microbe Interact., 16, 281-288.

    PubMed  CAS  Google Scholar 

  • Natera, S. H. A., Guerreiro, N., and Djordjevic, M. A. (2000). Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol. Plant-Microbe Interact., 13, 995-1009.

    PubMed  CAS  Google Scholar 

  • Osuna, D., Galvez-Valdivieso, G., Piedras, P., Pineda, M., and Aguilar, M. (2001). Cloning, characterization and mRNA expression analysis of PVas1 a type 1 asparagine synthetase gene from Phaseolus vulgaris. Planta, 13, 402-410.

    Google Scholar 

  • Pathirana, M. S., Samac, D. A., Roeven, R., Yoshioka, H., Vance, C. P., and Gantt, J. S. (1997). Analyses of phosphoenolpyruvate carboxylase gene structure and expression in alfalfa nodules. Plant J., 12, 293-304.

    PubMed  CAS  Google Scholar 

  • Pellissier, H. C., Frerich, A., Desimone, M., Schumacher, K., and Tegeder, M. (2004). PvUPS1, an allantoin transporter in nodulated roots of French bean. Plant Physiol., 134, 664-675.

    Google Scholar 

  • Phillips, D. A. (1980). Efficiency of symbiotic nitrogen fixation in legumes. Annu. Rev. Plant Physiol., 31, 29-49.

    CAS  Google Scholar 

  • Quackenbush, J., Liang, F., Holt, I., Pertea, G., and Upton, J. (2000). The TIGR gene indices: Reconstruction and representation of expressed gene sequences. Nucleic Acids Res., 28, 141-145.

    PubMed  CAS  Google Scholar 

  • Ramirez, M., Graham, M. A., Blanco-Lopez, L., Silvente, S., Medrano-Soto, A., et al. (2005). Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol., 137, 1211-1227.

    PubMed  CAS  Google Scholar 

  • Robinson, D. L., Trepp, G. B., Gregerson, R. G., Twary, S. N., Roeven, R., Gantt, J. S., et al. (1999). Cloning and developmental expression of a nodule-enhanced sucrose synthase cDNA from alfalfa. In E. Martinez and G. Hernandez (Eds.), Highlights of nitrogen fixation research (pp. 23-31). Dordrecht, The Netherlands: Kluwer Academic Publishers/Plenum Press.

    Google Scholar 

  • Rosendahl, L., Vance, C. P., and Pederson, W. B. (1990). Products of dark CO2 fixation in pea root nodules support bacteroid metabolism. Plant Physiol., 93, 12-19.

    PubMed  CAS  Google Scholar 

  • Saalbach, G., Erik, P., and Wienkoop, S. (2002). Characterization by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes. Proteomics, 2, 325-337.

    PubMed  CAS  Google Scholar 

  • Scharff, A. M., Egsgaard, H., Hansen, P. E., and Rosendahl, L. (2003). Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. Plant Physiol., 131, 367-378.

    PubMed  CAS  Google Scholar 

  • Schnorr, K. M., Laloue, M., and Hirel, B. (1996). Isolation of cDNAs encoding two purine biosynthetic enzymes of soybean and expression of the corresponding transcripts in roots and root nodules. Plant Mol. Biol., 32, 751-757.

    PubMed  CAS  Google Scholar 

  • Schoenbeck, M. A., Temple, S. J., Trepp, G. B., Blumenthal, J. M., Samac, D. A., Gantt, J. S., et al. (2000). Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene. J. Exp. Bot., 51, 29-39.

    PubMed  CAS  Google Scholar 

  • Schubert, K. R. (1982). The energetics of biological nitrogen fixation. In Workshop summaries I. Rockville, MD: American Society of Plant Physiologists (30 pp.).

    Google Scholar 

  • Schulze, J., Shi, L.-F., Blumenthal, J., Samac, D. A., Gantt, J. S., and Vance, C. P. (1998). Inhibition of alfalfa root nodule phosphoenolpyruvate carboxylase through an antisense strategy impacts nitrogen fixation and plant growth. Phytochemistry, 49, 341-346.

    CAS  Google Scholar 

  • Schulze, J., Tesfaye, M., Litjens, R. H. M. G., Bucciarelli, B., Trepp, G., Miller, S., et al. (2002). Malate plays a central role in plant nutrition. Plant Soil, 247, 133-139.

    CAS  Google Scholar 

  • Shi, L.-F., Twary, S. N., Yoshioka, H., Gregerson, R. G., Miller, S. S., Samac, D. A., et al. (1997). Nitrogen assimilation in alfalfa: Isolation and characterization of an asparagine synthetase gene showing enhanced expression in root nodules and dark-adapted leaves. Plant Cell, 9, 1339-1356.

    PubMed  CAS  Google Scholar 

  • Silvente, S., Camas, A., and Lara, M. (2003a). Heterogeneity of sucrose synthase genes in bean (Phaseolus vulgaris L.): Evidence for a nodule-enhanced sucrose synthase gene. J. Exp. Bot., 54, 749-755.

    CAS  Google Scholar 

  • Silvente, S., Camas, A., and Lara, M. (2003b). Molecular cloning of the cDNA encoding aspartate aminotransferase from bean root nodules and determination of its role in nitrogen metabolism. J. Exp. Bot., 54, 1545-1551.

    CAS  Google Scholar 

  • Smith, P. M. C., Mann, A. J., Goggin, D. E., and Atkins, C. A. (1998). AIR synthetase in cowpea nodules: A single gene product targeted to two organelles? Plant Mol. Biol. 36, 811-820.

    PubMed  CAS  Google Scholar 

  • Smith, P. M. C., and Atkins, C. A. (2002). Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol., 128, 793-802.

    PubMed  CAS  Google Scholar 

  • Sprent, J. I. (1980). Root nodule anatomy, type of export product, and evolutionary origin in some Leguminosae. Plant Cell Environ., 3, 35-43.

    CAS  Google Scholar 

  • Streeter, J. G. (1980). Carbohydrates in soybean nodules. II. Distribution of compounds in seedlings during the onset of nitrogen fixation. Plant Physiol., 66, 471-476.

    PubMed  CAS  Google Scholar 

  • Szczyglowski, K., Hamburger, D., Kapronov, P., and de Bruijn, F. J. (1997). Construction of a Lotus japonicus late nodulin expressed sequence tag library and identification of novel nodule-specific genes. Plant Physiol., 114, 1335-1346.

    PubMed  CAS  Google Scholar 

  • Ta, T.-C., Faris, M. A., and Macdowall, F. D. H. (1986). Pathways of nitrogen metabolism in nodules of alfalfa (Medicago sativa L.). Plant Physiol., 80, 1002-1005.

    PubMed  CAS  Google Scholar 

  • Tajima, S., Nomura, M., and Kouchi, H. (2004). Ureide biosynthesis in legume nodules. Front. Biosci., 9, 1374-1381.

    PubMed  CAS  Google Scholar 

  • Tajima, S., Takane, K., Nomura, M., and Kouchi, H. (2000). Symbiotic nitrogen fixation at the late stage of nodule formation in Lotus japonicus and other legume plants . J. Plant Res., 113, 467-473.

    Google Scholar 

  • Temple, S. J., Heard, J., Ganter, J., Dunn, K., and Sengupta-Gopalan, C. (1995). Characterization of a nodule-enhanced glutamine synthetase from alfalfa: Nucleotide sequence, in situ localization, and transcript analysis. Mol. Plant-Microbe Interact., 8, 218-227.

    PubMed  CAS  Google Scholar 

  • Temple, S. J., Vance, C. P., and Gantt, J. S. (1998). Glutamate synthase and nitrogen assimilation. Trends Plant Sci., 3, 51-56.

    Google Scholar 

  • Thummler, F., and Verma, D. P. S. (1987). Nodulin-100 of soybean is the subunit of sucrose synthase regulated by availability of free heme in nodules. J. Biol. Chem., 262, 14730-14736.

    PubMed  CAS  Google Scholar 

  • Tingey, S. V., Walker, E. L., and Coruzzi, G. M. (1987). Glutamine synthetase genes of pea encode distinct polypeptides which are differentially expressed in leaves, roots and nodules. EMBO J., 6, 1-9.

    PubMed  CAS  Google Scholar 

  • Trepp, G. B., van de Mortel, M., Yoshioka, H., Miller, S. S., Samac, D. A., Gantt, J. S., et al. (1999). NADH-glutamate synthase in alfalfa root nodules. Genetic regulation and cellular expression. Plant Physiol., 119, 817-828.

    PubMed  CAS  Google Scholar 

  • Udvardi, M. K., and Day, D. A. (1997). Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48, 493-523.

    PubMed  CAS  Google Scholar 

  • Vance, C. P. (2000). Amide biosynthesis in root nodules of temperate legumes. In E. W. Triplett (Ed.), Prokaryotic nitrogen fixation: A model system for analysis of a biological process (pp. 589-608). Wymondham, UK: Horizon Scientific Press.

    Google Scholar 

  • Vance, C. P., Gregerson, R. G., Robinson, D. L., Miller, S. S., and Gantt, J. S. (1994). Primary assimilation of nitrogen in alfalfa nodules: Molecular features of the enzymes involved. Plant Sci., 101, 51-64.

    CAS  Google Scholar 

  • Vance, C. P., and Heichel, G. H. (1991). Carbon in N2 fixation: Limitation or exquisite adaptation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 373-390.

    CAS  Google Scholar 

  • Vance, C. P., Miller, S. S., Driscoll, B. T., Robinson, D. L., Trepp, G. B., Gantt, J. S., et al. (1997). Nodule carbon metabolism: Organic acids for N2 fixation. In C. Elmerich, A. Kondorosi, and W. E. Newton (Eds.), Biological nitrogen fixation for the 21 st century (pp. 443-448). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Vance, C. P., Miller, S. S., Gregerson, R. G., Samac, D. A., Robinson, D. L., and Gantt, J. S. (1995). Alfalfa NADH-dependent glutamate synthase: Structure of the gene and importance in symbiotic N2 fixation. Plant J., 8, 345-358.

    PubMed  CAS  Google Scholar 

  • van der Graaf, E., Hooykas, P., Lein, W., Lerchl, J., Kunze, G., Sonnewald, U., et al. (2004). Molecular analysis of “de novo” purine biosynthesis in solaneceous species and in Arabidopsis thaliana. Front. Biosci., 9, 1803-1816.

    Google Scholar 

  • Waterhouse, R. N., Smyth, A. J., Massonneau, A., Prosser, I. M., and Clarkson, D. T. (1996). Molecular cloning and characterization of asparagine synthetase from Lotus japonicus: Dynamics of asparagine synthesis in N-sufficient conditions. Plant Mol. Biol., 30, 883-897.

    PubMed  CAS  Google Scholar 

  • Waters, J. K., Hughes, B. L., Purcell, L. C., Gerhardt, K. O., Mawhinney, T. P., and Emerich, D. W. (1998). Alanine, not ammonia, is excreted from N2-fixing soybean nodule bacteroids. Proc. Natl. Acad. Sci. USA, 95, 12038-12042.

    PubMed  CAS  Google Scholar 

  • Wienkoop, S., and Saalbach, G. (2003). Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiol., 131, 1080-1090.

    PubMed  CAS  Google Scholar 

  • Winkler, R. G., Blevins, D. G., Polacco, J. C., and Randall, D. D. (1988). Ureide catabolism in nitrogen fixing legumes. Trends Biochem Sci., 13, 97-100.

    PubMed  CAS  Google Scholar 

  • Winter, H., Huber, J. L., and Huber, S. C. (1997). Membrane association of sucrose synthase: Changes during the graviresponse and possible control by protein phosphorylation. FEBS Lett., 420, 151-155.

    PubMed  CAS  Google Scholar 

  • Xu, W., Zhou, Y., and Chollet, R. (2003). Identification and expression of a soybean nodule-enhanced PEP-carboxylase kinase gene (NE-PpcK) that shows striking up-/down-regulation in vivo. Plant J., 34, 441-452.

    PubMed  CAS  Google Scholar 

  • Yoshioka, H., Gregerson, R. G., Samac, D. A., Hoevens, K. C. M., Trepp, G. B., Gantt, J. S., et al. (1999). Aspartate aminotransferase in alfalfa nodules: Localization of mRNA during effective and ineffective nodule development and promoter analysis. Mol. Plant-Microbe Interact., 12, 263-274.

    CAS  Google Scholar 

  • Zhang, X.-Q., and Chollet, R. (1997). Seryl-phosphorylation of a soybean nodule sucrose synthase (nodulin-100) by a Ca2 + -dependent protein kinase. FEBS Lett., 410, 126-130.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vance, C.P. (2008). Carbon and Nitrogen Metabolism in Legume Nodules. In: Dilworth, M.J., James, E.K., Sprent, J.I., Newton, W.E. (eds) Nitrogen-fixing Leguminous Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3548-7_10

Download citation

Publish with us

Policies and ethics