Evolution and Diversity of Legume Symbiosis

  • J. I. Sprent
Part of the Nitrogen Fixation: Origins, Applications, and Research Progress book series (NITR, volume 7)


Lateral Root Royal Botanic Garden Infection Thread Actinorhizal Plant Nodulation Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barham, J. (2005). Dipterygeae. In G. Lewis, B. Schrire, B. Mackinder, and M. Lock, (Eds.), Legumes of the world, (pp.250-251). Kew, UK: Royal Botanic Gardens.Google Scholar
  2. Barrett, C. F., and Parker, M. A. (2005). Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst. Appl. Microbiol., 28, 57-65.PubMedCrossRefGoogle Scholar
  3. Bird, D., Opperman, C. H., and Davies, K. G. (2003). Interactions between bacteria and plant-parasitic nematodes: Now and then. Int. J. Parasitol., 33, 1269-1276.PubMedCrossRefGoogle Scholar
  4. Bright, L. J., Liang, Y., Mitchell, D. M., and Harris, J. M. (2005). The LATD gene of Medicago trun-catula is required for both nodule and root development. Mol. Plant-Microb. Interact., 18, 521-532.CrossRefGoogle Scholar
  5. Burdon, J. J., Gibson, A. H., Searle, S. D., Woods, M. J., and Brockwell, J. (1999). Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian Acacia: Within-species interactions. J. Appl. Ecol., 36, 398-408.CrossRefGoogle Scholar
  6. Cannon, S. B., McCombie, W. R., Sato, S., Tabata, S., Denny, R., et al. (2003). Evolution and micro-synteny of the apyrase gene family in three legume genomes. Mol. Genet. Genom., 270, 347-361.CrossRefGoogle Scholar
  7. Chandler, M. R. (1978). Some observations on the infection of Arachis hypogaea L. by Rhizobium. J. Exp. Bot., 29, 749-755.CrossRefGoogle Scholar
  8. Chen, W-M, James, E. K., Prescott, A. R., Kierans, M., and Sprent, J. I. (2003). Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis. Mol. Plant-Microb. Interact., 16, 1051-1061.CrossRefGoogle Scholar
  9. Chen, W-M., Janes, E. K., Chou, J-H., Sheu, S-Y., Yang, S-Z., and Sprent, J. I. (2005). β-rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. New Phytol., 268, 661-675.CrossRefGoogle Scholar
  10. Corby, H. D. L. (1981). The systematic value of leguminous root nodules. In R. M. Polhill and P. H. Raven (Eds.) Advances in legume systematics, Part 2 (pp. 657-669). Kew, UK: Royal Botanic Gardens.Google Scholar
  11. Corby, H. D. L. (1988). Types of rhizobial nodule and their distribution among the Leguminosae. Kirkia, 13, 53-123.Google Scholar
  12. Crisp, M., Cook, L., and Steane, D. (2004). Radiation of the Australian flora: What can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Phil. Trans. Roy. Soc. B, 359, 1551-1571.CrossRefGoogle Scholar
  13. Deschodt, C. C., and Strijdom, B. W. (1976). Effective nodulation of Aspalathus linearisssp.linearis by rhizobia from other Aspalathus species. Phytophylactica, 8, 103-104.Google Scholar
  14. Downie, J. A. (2005). Legume haemoglobins: Symbiotic nitrogen fixation needs bloody nodules. Curr. Biol., 15, 196-198.CrossRefGoogle Scholar
  15. Doyle, J. J., and Luckow, M. A. (2003). The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol., 131, 900-910.PubMedCrossRefGoogle Scholar
  16. Doyle, J. J., Doyle, J. L., Ballenger, J. A., Dickson, E. E., Kafita, T., and Ohashi, H. (1997). A phylogeny of the chloroplast gene rbcL in the Leguminosae: Taxonomic correlations and insights into the evolution of nodulation. Amer. J. Bot., 84, 541-554.CrossRefGoogle Scholar
  17. Ducousso, M., Béna, G., Bourgeois, C., Buyck, B., Eyssartier, G., et al.(2004). The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India-Madagascar separation about 88 million years ago. Mol. Ecol., 13, 231-236.PubMedCrossRefGoogle Scholar
  18. Fehlberg, V., Vieweg, M. F., Dohmann, E. M. N., Hohnjec, N., Pühler, A., et al.(2005). The promoter of the leghaemoglobin gene VfLb29: Functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscular-containing cells of mycorrhizal roots. J. Exp. Bot., 56, 799-806.PubMedCrossRefGoogle Scholar
  19. Fitter, A. H., and Moyersoen, B. (1996). Evolutionary trends in root-microbe symbioses. Phil. Trans. R. Soc. Lond.B, 351, 1367-1375.CrossRefGoogle Scholar
  20. Floyd, S. K., and Bowman, J. L. (2004). Ancient microRNA target sequences in plants. Nature, 428, 485-486.PubMedCrossRefGoogle Scholar
  21. Fortunato, R. H. (2005). Mimozygantheae. In G. Lewis, B. Schrire, B. Mackinder, and M. Lock, (Eds.), Legumes of the world, (pp. 184-185). Kew, UK: Royal Botanic Gardens.Google Scholar
  22. Gualtieri, G., and Bisseling, T. (2000). The evolution of nodulation. Plant Mol. Biol., 42, 181-194.PubMedCrossRefGoogle Scholar
  23. Goormachtig, S., Capoen, W., James, E. K., and Holsters, M. (2004). Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. Proc. Natl. Acad. Sci. USA, 101, 6303-6308.Google Scholar
  24. Guldner, E., Desmarais, E., Galtier, N., and Godelle, B. (2004). Molecular evolution of plant haemoglobin: Two haemoglobin genes in nymphaeaceae Euryale ferox. J. Evol. Biol., 17, 48-54.PubMedCrossRefGoogle Scholar
  25. Hardison, R. C. (1996). A brief history of hemoglobins: Plant, animal, protist and bacteria. Proc. Natl. Acad. Sci. USA, 93, 5675-5679.PubMedCrossRefGoogle Scholar
  26. Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L., and Hedges, S. B. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 1129-1933.PubMedCrossRefGoogle Scholar
  27. Iannetta, P. P. M., James, E. K., Sprent, J. I., and Minchin, F. R.(1995). Time-course of changes involved in the operation of the oxygen diffusion barrier in white lupins. J. Exp. Bot., 46, 565-575.CrossRefGoogle Scholar
  28. Igamberdiev, A. U., and Hill, R. D. (2004). Nitrate, NO and haemoglobin in plant adaptation to hypoxia: An alternative to classic fermentation pathways. J. Exp. Bot., 55, 2473-2482.PubMedCrossRefGoogle Scholar
  29. Ireland, H. E. (2005). Swartzieae. In G. Lewis, B. Schrire, B. Mackinder, and M. Lock, (Eds.), Legumes of the world, (pp. 215-225). Kew, UK: Royal Botanic Gardens.Google Scholar
  30. James, E. K., Sprent, J. I., Sutherland, J. M., McInroy, S. G., and Minchin, F .R. (1992). The structure of nitrogen fixing root nodules in the aquatic mimosoid legume Neptunia plena. Ann. Bot., 14, 173-180.Google Scholar
  31. James, E. K., Iannetta, P. P. M., Naisbitt, T., Goi, S. R., Sutherland, J. M., et al.(1994). A survey of N2-fixing nodules in the Leguminosae with particular reference to intercellular glycoproteins and the control of oxygen diffusion. Proc. Roy. Soc. Edin., 102B, 429-432.Google Scholar
  32. Lavin, M., Pennington, R. T., Klitgaard, B. B., Sprent, J. I., de Lima, H. C., and Gasson, P. E. (2001). The Dalbergioid legume (Fabaceae): Delimitation of a pantropical monophyletic clade. Amer. J. Bot., 88, 503-533.CrossRefGoogle Scholar
  33. Lavin, M., and Schrire, B. D. (2005). Sesbanieae. In G. Lewis, B. Schrire, B. Mackinder, and M. Lock (Eds.), Legumes of the world, (pp. 452-453). Kew, UK: Royal Botanic Gardens.Google Scholar
  34. Lavin, M., Herendeen P. S., and Wojciechowski, M. F. (2005). Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol., 54, 575-594.PubMedCrossRefGoogle Scholar
  35. Lewis, G. P. (2005a). Cassieae. In G. Lewis, B. Schrire, B. Mackinder, and M. Lock (Eds.), Legumes of the world, (pp. 112-135). Kew, UK: Royal Botanic Gardens.Google Scholar
  36. Lewis, G. P. (2005b). Acacieae. In G. Lewis, B. Schrire, B. Mackinder, and M. Lock (Eds.), Legumes of the world, (pp. 187-191). Kew, UK: Royal Botanic Gardens.Google Scholar
  37. Lewis, G. P., and Schrire, B. D. (2003). Leguminosae or Fabaceae. In B. B. Klitgaard and A. Bruneau (Eds.) Advances in legume systematics, Part 10, (pp.1-3). Kew, UK: Royal Botanic Gardens.Google Scholar
  38. Lewis, G., Schrire, B., Mackinder, B., and Lock, M. (2005). Legumes of the world. Kew, UK: Royal Botanic Gardens.Google Scholar
  39. Luckow, M. (2005). Mimoseae. In G. Lewis, B. Schrire, B. Mackinder, and M. Lock (Eds.), Legumes of the world, (pp.162-183). Kew, UK: Royal Botanic Gardens.Google Scholar
  40. Marmeisse, R., Guidot, A., Gay, G., Lambilliotte, R., Sentenac, H., et al. (2004). Hebeloma cylindrosporum – a model species to study ectomycorrhizal symbiosis from gene to ecosystem. New Phytol., 163, 481-498.CrossRefGoogle Scholar
  41. Maslin, B. R. (2005). World wide wattle. http://www.worldwidewattle.comGoogle Scholar
  42. Mathesius, U. (2003). Conservation and divergence of signalling pathways between roots and soil microbes - the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls. Plant Soil, 255, 105-119.CrossRefGoogle Scholar
  43. Naisbitt, T., James, E. K., and Sprent, J. I. (1992). The evolutionary significance of the genus Chamaecrista as determined by nodule structure. New Phytol., 122, 487-492.CrossRefGoogle Scholar
  44. Nicolson, T. H. (1975). Evolution of vesicular-arbuscular mycorrhizas. In F. E. Sanders, B. Mosse and P. B. Sanders (Eds), Endomycorrhizas, (pp. 25-34). London, UK: Academic Press.Google Scholar
  45. Nutman, P. S. (1948). Physiological studies on nodule formation I. The relation between nodulation and lateral root formation in red clover. Ann. Bot., 12, 81-96.Google Scholar
  46. Ott, T., van Dongen, J. T., Günther, C., Krussel, L., Desbrosses, G., et al. (2005). Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol., 15, 531-535.PubMedCrossRefGoogle Scholar
  47. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S. (2005). Marked decline in atmospheric carbon dioxide concentrations during the Palaeogene. Science, 309, 600-603PubMedCrossRefGoogle Scholar
  48. Pawlowski, K. and Sprent, J. I. (2007). Comparison between actinorhizal and legume symbioses. In K. Pawlowski and W. E. Newton (Eds.), Nitrogen-fixing actinorhizal symbioses(pp. 261-288). Dordrecht, The Netherlands: Springer.Google Scholar
  49. Pennington, R. T., Cronk, Q. C. B., and Richardson, J. A. (2004). Introduction and synthesis: Plant phylogeny and the origin of major biomes. Phil. Trans. Roy. Soc. Lond. B, 359, 1455-1464.CrossRefGoogle Scholar
  50. Pennington, R. T., Stirton, C. H. and Schrire, B. D. (2005). Sophoreae. In G. Lewis, B. Schrire, B. Mackinder, and M. Lock (Eds.), Legumes of the world, (pp. 227-249). Kew, UK: Royal Botanic Gardens.Google Scholar
  51. Polhill, R. M. (1981). Papilionoideae. In R. M. Polhill, and P. H. Raven (Eds.), Advances in legume systematics, Part 1, (pp. 191-208). Kew, UK: Royal Botanic Gardens.Google Scholar
  52. Raven, J. A., and Edwards, D. (2001). Roots: Evolutionary origins and biogeochemical significance. J. Exp. Bot., 52, 381-401.PubMedGoogle Scholar
  53. Remy, W., Taylor, T. N., Hass, H., and Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. USA, 91, 11841–11843.Google Scholar
  54. Renner, S. (2004). Plant dispersal across the tropical Atlantic by wind and sea currents. Int. J. Plant Sci., 165, S23-33 (Suppl. S)CrossRefGoogle Scholar
  55. Rodríguez-Llorente, I. D., Pérez-Hormaeche, J., El Mounadi, K., Dary, M., Caviedes, M. A., et al.(2004). From pollen tubes to infection threads: Recruitment of floral pectic genes for symbiosis. Plant J., 39, 587-598.PubMedCrossRefGoogle Scholar
  56. Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytol., 161,341-370.CrossRefGoogle Scholar
  57. Sanchez, L., Weidmann, S., Brechenmacher, L., Batoux, M., van Tuinen, D., et al.(2004). Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. New Phytol., 161, 855-863.CrossRefGoogle Scholar
  58. Schrire, B. D. (2005). Millettieae. In G. Lewis, B. Schrire, B. Mackinder, and M. Lock (Eds.), Legumes of the world, (pp. 367-387). Kew, UK: Royal Botanic Gardens.Google Scholar
  59. Schrire, B. D., Lavin, M., and Lewis, G. P. (2005). Global distribution patterns of the Leguminosae: Insights from recent phylogenies. In I. Friis and H. Balslev (Eds.), Plant diversity and complexity patterns: Local, regional and global dimensions. Biol. Skr., 55, 375-422.Google Scholar
  60. Schulman, H. M., Lewis, M. C., Tipping, E. M., and Bordeleau, L. M. (1988). Nitrogen fixation by three species of Leguminosae in the Canadian high Arctic tundra. Plant Cell Environ., 11, 721-728.CrossRefGoogle Scholar
  61. Soltis, D. E., Soltis, P. S., Chase, M. W., Mort, M. E., Albach,D. C., et al.(2000). Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot. J. Linn. Soc., 133, 381-461.CrossRefGoogle Scholar
  62. Sousa, S. M., and Rudd, V. E. (1993). Revision del genero Styphnolobium (Leguminosae: Papilionoideae: Sophoreae). Ann. Missouri Bot. Garden, 80, 270-283.CrossRefGoogle Scholar
  63. Sprent, J. (1994). Nitrogen acquisition systems in the Leguminosae. In J. I. Sprent and D. McKey (Eds.), Advances in legume systematics, Part5, The nitrogen factor (pp. 1-23). Kew, UK: Royal Botanic Gardens.Google Scholar
  64. Sprent, J. I. (2000). Nodulation as a taxonomic tool. In P. S. Herendeen and A. Bruneau (Eds.), Advances in legume systematics, Part 9, (pp. 21-44). Kew, UK: Royal Botanic Gardens.Google Scholar
  65. Sprent, J. I. (2001). Nodulation in legumes. Kew, UK: Royal Botanic Gardens (146 pp.).Google Scholar
  66. Sprent, J. I. (2003). Mutual sanctions. Nature, 422, 672-674.PubMedCrossRefGoogle Scholar
  67. Sprent, J. I. (2005). Nodulated legume trees. In D. Werner and W. E. Newton (Eds.), Nitrogen fixation in agriculture, forestry, ecology, and the environment (pp. 113-141). Dordrecht, The Netherlands: Springer.Google Scholar
  68. Sprent, J. I., and Parsons, R. (2000). Nitrogen fixation in legume and non-legume trees. Field Crops Res., 65, 183-196.CrossRefGoogle Scholar
  69. Sprent J. I., and Sprent, P. (1990). Nitrogen fixing organisms: Pure and applied aspects. London, UK: Chapman & Hall.Google Scholar
  70. Sprent, J. I., Sutherland, J. M., and de Faria, S. M. (1989). Structure and function of nodules from woody legumes. In C. H. Stirton and J. L. Zarucchi (Eds.), Monographs in systematic botany 29, (pp. 559-578). St Louis, MO: Missouri Botanical Gardens.Google Scholar
  71. Sutherland, J. M., McInroy, S. G., James, E. K., and Naisbitt, T. (1994). Nodule structure with special reference to the tribes Sophoreae, Genisteae and Thermopsideae. In J. I. Sprent and D. McKey (Eds.), Advances in legume systematics, Part 5, The nitrogen factor (pp. 41-55). Kew, UK: Royal Botanic Gardens.Google Scholar
  72. Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., et al.(2001). Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol., 183, 214-220.PubMedCrossRefGoogle Scholar
  73. Szczyglowski, K., and Amyot, L. (2003). Symbiosis, inventiveness by recruitment? Plant Physiol., 131, 935-940.PubMedCrossRefGoogle Scholar
  74. Vega-Hernández, M. C., Pérez-Galdona, R., Dazzo,. F. B., Jarabo-Lorenzo, A., Alfayate, M. C., et al. (2001). Novel infection process in the indeterminate root nodule symbiosis between Chamaecytisus proliferus (tagasaste) and Bradyrhizobium sp. New Phytol., 150, 707-721.CrossRefGoogle Scholar
  75. Vieweg, M. F., Fruhling, M., Quant, H. J., Heim, U., Baumlein, H., et al.(2004). The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and non-legume plants. Mol. Plant-Microbe Interact., 17, 62-69.PubMedCrossRefGoogle Scholar
  76. Wittenberg, J. B., Bolognesi, M., Wittenberg, B. A., and Guertin, M. (2002). Truncated hemoglobins: A new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes and plants. J. Biol. Chem., 277, 871-874.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. I. Sprent
    • 1
  1. 1.WormitScotland,UK

Personalised recommendations