Skip to main content

Evolution Of Actinorhizal Host Plants And Frankia Endosymbionts

  • Chapter
Nitrogen-fixing Actinorhizal Symbioses

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akimov, V. N., and Dobritza, S. V. (1992). Grouping of Frankia strains on the basis of DNA relatedness. Syst. Appl. Microbiol., 15,327-379.

    Google Scholar 

  • Akimov, V. N., Dobritsa, S. V., and Stupar, O. S. (1991). Grouping of Frankia strains by DNA-DNA homology: How many genospecies are in the genus Frankia? In M. Polsinelli, R. Materassi and M. Vincenzini (Eds.), Nitrogen fixation (pp. 635-636). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Akkermans, A. D. L., Hafeez, F., Roelofsen, W., Chaudhary, A. H., and Baas, R. (1983). Ultrastructure and nitrogenase activity of Frankia grown in pure culture and in actinorrhizae of Alnus, Colletia and Datisca. In C. Veeger and W. E. Newton (Eds.), Advances in nitrogen fixation research (pp. 311-319). The Hague, The Netherlands: Nijhoff/Junk.

    Google Scholar 

  • Akkermans, A. D. L., and van Dijk, C. (1981). Non-legumious root-nodule symbioses with actinomycetes and Rhizobium. In W. Broughton (Ed.), Nitrogen fixation (vol. 1, pp. 57-103). London, UK: Oxford University Press.

    Google Scholar 

  • An, C. S., Riggsby, W. S., and Mullin, B. C. (1985). Relationships of Frankia isolates based on deoxyribonucleic acid homology studies. Int. J. Syst. Bacteriol., 35, 140-146.

    CAS  Google Scholar 

  • Angiosperm Phylogeny Group (1998). An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard., 85, 531-553.

    Google Scholar 

  • Baker, D. D. (1987). Relationships among pure cultured strains of Frankia based on host specificity. Physiol. Plant., 70, 245-248.

    Google Scholar 

  • Baker, D. D., and Miller, N. G. (1980). Ultrastructural evidence for the existence of actinorhizal species in the late Pleistocene. Can. J. Bot., 58, 1612-1620.

    Google Scholar 

  • Baker, D. D., and Schwintzer, C. R. (1990). Introduction. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 1-13). New York, NY: Academic Press.

    Google Scholar 

  • Becking, J. H. (1970). Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Inter. J. System. Bacteriol., 20, 201-220.

    Google Scholar 

  • Becking, J. H., De Boer, W. E., and Houwink, A. L. (1964). Electron microscopy of the endophyte of Alnus glutinosa. Antonie Leeuwenhoek J. Microbiol. Serol., 30, 343-376.

    CAS  Google Scholar 

  • Benoit, L. F., and Berry, A. M. (1990). Methods for the production and use of actinorhizal plants in forestry, low maintenance landscapes, and revegetation. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 281-297). New York, NY: Academic Press.

    Google Scholar 

  • Benson, D. R., and Clawson, M. L. (2000). Evolution of the actinorhizal plant symbioses. In E. W. Triplett (Ed.) Prokaryotic nitrogen fixation: A model system for analysis of biological processes(pp. 207-224). Wymondham, UK: Horizon Scientific Press.

    Google Scholar 

  • Benson, D. R., and Silvester, W. B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev., 57, 293-319.

    PubMed  CAS  Google Scholar 

  • Benson, D. R., Stephens, D. W., Clawson, M. L., and Silvester, W. B. (1996). Amplification of 16S rRNA genes from Frankia strains in root nodules of Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata. Appl. Environ. Microbiol., 62, 2904-2909.

    PubMed  CAS  Google Scholar 

  • Berg, R. H. (1983). Preliminary evidence for the involvement of suberization in infection of Casuarina. Can. J. Bot., 61, 2910-2918.

    CAS  Google Scholar 

  • Berg, R. H., Langenstein, B., and Silvester, W. B. (1999). Development in the Datisca-Coriaria nodule type. Can. J. Bot., 77, 1334-1350.

    Google Scholar 

  • Berg, R. H., and McDowell, L. (1988). Cytochemistry of the wall of infected Casuarina actinorhizae. Can. J. Bot., 66,2038-2047.

    Google Scholar 

  • Berry, A. M., Harriott, O. T., Moreau, R. A., Osman, S. F., Benson, D. R., and Jones, A. D. (1993). Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Natl. Acad. Sci. USA, 90,6091-6094.

    PubMed  CAS  Google Scholar 

  • Berry, A. M., McIntyre, L., and. McCully, M. E. (1986). Fine structure of root hair infection leading to nodulation in the Frankia-Alnussymbiosis. Can. J. Bot., 64,292-305.

    Google Scholar 

  • Berry, A. M., and Sunell, L. A. (1990). The infection process and nodule development. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 61-81). New York, NY: Academic Press.

    Google Scholar 

  • Berry, A. M., and Torrey, J. G. (1983). Root hair deformation in the infection process of Alnus rubra. Can. J. Microbiol., 61, 2863-2976.

    Google Scholar 

  • Beyazova, M., and Lechevalier, M. P. (1992). Low-frequency restriction fragment analysis of Frankiastrains (Actinomycetales). Int. J. Syst. Bacteriol., 42, 422-433.

    PubMed  CAS  Google Scholar 

  • Bloom, R. A., Mullin, B. C., and Tate, III, R. L. (1989). DNA restriction patterns and DNA-DNA solution hybridization studies of Frankia isolates from Myrica pennsylvanica (bayberry). Appl. Environ. Microbiol., 55, 2155-2160.

    PubMed  CAS  Google Scholar 

  • Bosco, M., Fernandez, M. P., Simonet, P., Materassi, R., and Normand, P. (1992). Evidence that some Frankia sp. strains are able to cross boundaries between Alnus and Elaeagnus host specificity groups. Appl. Environ. Microbiol., 58,1569-1576.

    PubMed  CAS  Google Scholar 

  • Bosco, M. S., Jamann, S., Chapelon, C., Simonet, P., and Normand, P. (1994). Frankia microsymbiont in Dryas drummondii nodules is closely related to the microsymbiont of Coriaria and genetically distinct from other characterized Frankia strains. In H. A. Hegazi, M. Fayez, and M. Monib (Eds.), Nitrogen fixation with non-legumes (pp. 173-183). Cairo, Egypt: The American University in Cairo Press.

    Google Scholar 

  • Brunchorst, J. (1886-1888). Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Unters. Bot. Inst. Tübingen, 2, 150-177.

    Google Scholar 

  • Brunchorst, J. (1887). Die Struktur der Inhaltskörper in den Zellen einiger Wurzelanschwellungen. Bergens Mus. Aarsb., 235.

    Google Scholar 

  • Bousquet, J., Strauss, S. H., Doerksen, A. H., and Price, R. A. (1992). Extensive variation in the rate of rbcLgene sequences among seed plants. Proc. Natl. Acad. Sci. U.S.A., 89,7844-7848.

    PubMed  CAS  Google Scholar 

  • Bremer, K. (1988). The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42, 795-803.

    CAS  Google Scholar 

  • Callaham, D., Del Tredici, P., and Torrey, J. G. (1978). Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science, 199, 899-902.

    PubMed  Google Scholar 

  • Callaham, D., Newcomb, W., Torrey, J. G., and Peterson, R. L. (1979). Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica, and Comptonia. Bot. Gaz., 140 (Suppl.), S1-S9.

    Google Scholar 

  • Calvert, H. E., Chaudhary, A. H., and Lalonde, M. (1979). Structure of an unusual nodule root symbiosis in a non-leguminous herbaceous dicotyledon. In J. C. Gordon, C. T. Wheeler, and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (p. 474). Corvallis, OR: Forest Research Laboratory, Oregon State University Press.

    Google Scholar 

  • Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., et al. (1993). Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann. Mo. Bot. Gard., 80,528-580.

    Google Scholar 

  • Clawson, M. L. (1999). The diversity, ecology and phylogeny ofFrankiain actinorhizal plants. Ph.D. Thesis, University of Connecticut, Storrs CT.

    Google Scholar 

  • Clawson, M. L., and Benson, D. R. (1999a). Dominance of Frankia strains in stands of Alnus incana subsp. rugosa and Myrica pennsylvanica. Can. J. Bot., 77, 1203-1207.

    Google Scholar 

  • Clawson, M. L., and Benson, D. R. (1999b). Natural diversity of Frankia strains in actinorhizal root nodules from promiscuous hosts in the family Myricaceae. Appl. Environ. Microbiol., 65, 4521-4527.

    CAS  Google Scholar 

  • Clawson, M. L., Carù, M., and Benson, D. R. (1998). Diversity of Frankia strains in root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl. Environ. Microbiol., 64, 3539-3543.

    Google Scholar 

  • Clegg, M. T. (1993). Chloroplast gene sequences and the study of plant evolution. Proc. Natl. Acad. Sci. U.S.A., 90,363-367.

    PubMed  CAS  Google Scholar 

  • Côte, B, Carlson, R. W., and Dawson, J. O. (1988). Leaf photosynthetic characteristics of seedlings of actinorhizal Alnus spp. and Elaeagnus spp. Photosynth. Res., 16, 211-218.

    Google Scholar 

  • Cournoyer, B., Gouy, M., and Normand, P. (1993). Molecular phylogeny of the symbiotic actinomycetes of the genus Frankia matches host-plant infection processes. Mol. Biol. Evol., 10, 1303-1316.

    PubMed  CAS  Google Scholar 

  • Cournoyer, B., and Lavire, C. (1999). Analysis of Frankia evolutionary radiation using glnIIsequences.FEMS Microbiol. Lett., 177, 29-34.

    PubMed  CAS  Google Scholar 

  • Crane, P. R. (1989a). Paleobotanical evidence on the early radiation of nonmagnoliid dicotyledons. Plant Syst. Evol., 162, 165-191.

    Google Scholar 

  • Crane, P. R. (1989b). Early fossil history and evolution of the Betulaceae. In P. R. Crane and S. Blackmore (Eds.), Evolution, systematics, and fossil history of the Hamamelidae (pp. 87-116). Oxford, UK: Clarendon Press.

    Google Scholar 

  • Crane, P. R., Friis, E. M., and Pedersen, K. R. (1995). The origin and early diversification of angiosperms. Nature, 374, 27-33.

    CAS  Google Scholar 

  • Cronquist, A. (1981). An integrated system of classification of flowering plants. New York, NY: Columbia University Press.

    Google Scholar 

  • Dahlgren, M. R. T. (1980). A revised system of classification of the angiosperms. Bot. J. Linn. Soc., 80, 91-124.

    Google Scholar 

  • Dawson, J. O. (1990). Interactions among actinorhizal and associated species. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 299-316). New York, NY: Academic Press.

    Google Scholar 

  • Dawson, J. O., and Gordon, J. C. (1979). Nitrogen fixation in relation to photosynthesis in Alnus glutinosa. Bot. Gaz., 140 (Suppl.), S70-S75.

    Google Scholar 

  • Dixon, R. O. D., and Wheeler, C. T. (1983). Biochemical, physiological, and environmental aspects of symbiotic nitrogen fixation. In J. C. Gordon and C. T. Wheeler (Eds.), Biological nitrogen fixation in forest ecosystems: Foundations and applications (pp. 107-171). The Hague, The Netherlands: Nijhoff/ Junk.

    Google Scholar 

  • Dommergues, Y. R., Diem, H. G., Gauthier, B. L., Dreyfus, B. L., and Cornet, F. (1984). Nitrogen-fixing trees in the tropics: Potentialities and limitations. In C. Veeger and W. E. Newton (Eds.), Recent advances in nitrogen fixation research(pp. 7-13). The Hague, The Netherlands: Nijhoff/ Junk.

    Google Scholar 

  • Donoghue, M. J., Olmstead, R. G., Smith, J. F., and Palmer, J. D. (1992). Phylogenetic relationships of Dipsacales based on rbcL sequences. Ann. Mo. Bot. Gard., 79, 333-345.

    Google Scholar 

  • Doyle, J. J. (1992). Gene trees and species trees: molecular systematics as one-character taxonomy. Syst. Bot., 17,144-163.

    Google Scholar 

  • Erlich, P. R., and Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586-608.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791.

    Google Scholar 

  • Fernandez, M. P., Meugnier, H., Grimont, P. A. D., and Bardin, R. (1989). Deoxyribonucleic acid relatedness among members of the genus Frankia. Int. J. Syst. Bacteriol., 39, 424-429.

    Google Scholar 

  • Gaut, B. S., Musa, S. V., Clark, W. D., and Clegg, M. T. (1992). Relative rates of nucleotide substitution on the rbcL locus of monocotyledonous plants. J. Mol. Evol., 35,292-303.

    PubMed  CAS  Google Scholar 

  • Gauthier, D., Jaffre, T., and Prin, Y. (1999). Occurrence of both Casuarina-infective and Elaeagnus-infective Frankia strains within actinorhizae ofCasuarina collina, endemic to New Caledonia. Eur. J. Soil. Biol., 35, 9-15.

    Google Scholar 

  • Gladkova, A. N. (1962). Fragments of the history of the Myricaceae family. Pollen Spores, 4, 345.

    Google Scholar 

  • Gordon, J. C., and Wheeler, C. T. (1978). Whole plant studies on photosynthesis and acetylene reduction in Alnus glutinosa. New Phytol., 80, 179-186.

    CAS  Google Scholar 

  • Graybeal, A. (1998). Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol., 47, 9-17.

    PubMed  CAS  Google Scholar 

  • Hahn, D., Lechevalier, M. P., Fischer, A., and Stackebrandt, E. (1989). Evidence for a close phylogenetic relationship between members of the genera Frankia, Geodermatophilus, and “Blastococcus” and emendation of the family Frankiaceae. System. Appl. Microbiol., 11, 236-242.

    CAS  Google Scholar 

  • Hennig, W. (1950). Grundzüge einer theorie der phylogenetischen systematik. Berlin, Germany: Deutscher Zentralverlag.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic systematics. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Herendeen, P. S., Magallon-Puebla, S., Lupia, R., Crane, P. R., and Kobylinksa, J. (1999). A preliminary conspectus of the Allon flora from the late Cretaceous (late Santonian) of central Georgia, U.S.A. Ann. Missouri Bot. Gard., 86, 407-471.

    Google Scholar 

  • Hillis, D. M. (1996). Inferring complex phylogenies. Nature, 383, 130-131.

    PubMed  CAS  Google Scholar 

  • Hiltner, L. (1898). über Entstehung und physiologische Bedeutung der Wurzelknöllchen. Forst. Naturwiss. Z., 7, 415-423.

    CAS  Google Scholar 

  • Hönerlage, W., Hahn, D., Zepp, K., Zeyer, J., and Normand, P. (1994). A hypervariable 23S rRNA region provides a discriminating target for specific characterization of uncultured and cultured Frankia. Syst. Appl. Microbiol., 17, 433-443.

    Google Scholar 

  • Hoot, S. B., Culham, A., and Crane, P. (1995). The utility of atpB gene sequences in resolving phylogenetic relationships: Comparison with rbcL and 18S ribosomal DNA sequences in the Lardizabalaceae. Ann. Missouri Bot. Gard., 82, 194-207.

    Google Scholar 

  • Huang, J.-B., Zhao, Z.-Y., Chen, G.-X., and Liu, H.-C. (1985). Host range of Frankia endophytes. Plant Soil, 87, 61-65.

    Google Scholar 

  • Huguet, V., McCray Batzli, J., Zimpfer, J. F., Normand, P., Dawson, J. O., and Fernandez, M. P. (2001). Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl. Environ. Microbiol., 67, 2116-2122.

    PubMed  CAS  Google Scholar 

  • Jacobsen-Lyon, K., Jensen, E. O., Jorgensen, J. E., Marcker, K. A., Peacock, W. J., and Dennis, E. S. (1995). Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca. Plant Cell, 7, 213-23.

    PubMed  CAS  Google Scholar 

  • Jamann, S., Fernandez, M. P., and Normand, P. (1993). Typing method for N2-fixing bacteria based on PCR-RFLP - application to the characterization of Frankia strains. Mol. Ecol., 2, 17-26.

    PubMed  CAS  Google Scholar 

  • Janzen, D. H. (1980). When is it co-evolution? Evolution, 34, 611-612.

    Google Scholar 

  • Jeong, S. C., Ritchie, N. J., and Myrold, D. D. (1999). Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Mol. Phylogen. Evol., 13, 493-503.

    CAS  Google Scholar 

  • Karavaev, M. N. (1959). Nitrogen-fixing nodules on the roots of fossil alder (Alnus sp.). (In Russian.) Bot. Zh. (Leningrad), 44, 1000-1001.

    Google Scholar 

  • Kohls, S. J., Thimmapuram, J., Buschena, C. A., Paschke, M. W., and Dawson, J. O. (1994). Nodulation patterns of actinorhizal plants in the family Rosaceae. Plant Soil, 162, 229-239.

    Google Scholar 

  • Laguerre, G., Mazurier, S. I., and Amarger, N. (1992). Plasmid profiles and restriction fragment length polymorphism of Rhizobium leguminosarum bv. viciae in field populations. FEMS Microbiol. Ecol., 101,17-26

    CAS  Google Scholar 

  • Lalonde, M. (1979). Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by an actinomycetal isolate from North American Comptonia peregrina (L.) Coult. root nodule. Bot. Gaz., 140 (Suppl.), S35-S43.

    Google Scholar 

  • Lalonde, M., Simon, L., Bousquet, J., and Seguin, A. (1988). Advances in the taxonomy of Frankia: Recognition of species alni and elaeagni and novel subspecies pommerii and vandijkii. In H. Bothe, F. J. De Bruijn, and W. E. Newton (Eds.), Nitrogen fixation: Hundred years after (pp. 671-680). Stuttgart, Germany: Gustav Fischer.

    Google Scholar 

  • Lankhanpal, R. N. (1970). Tertiary floras of India and their bearing on the historical geology of the region. Taxon, 19, 675-694.

    Google Scholar 

  • Laplaze, L., Duhoux, E., Franche, C., Frutz, T., Svistoonoff, S., et al. (2000). Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol. Plant-Microbe Interact., 13, 107-112.

    PubMed  CAS  Google Scholar 

  • Lechevalier, M. P. (1983). Cataloging Frankia strains. Can. J. Microbiol., 61, 2964-2967.

    Google Scholar 

  • Lechevalier, M. P. (1984). The taxonomy of the genus Frankia. Plant Soil, 78, 1-6.

    Google Scholar 

  • Lechevalier, M. P. (1994). Taxonomy of the genus Frankia(Actinomycetales). Int. J. Syst. Bacteriol., 44, 1-8.

    Google Scholar 

  • Lechevalier, M. P., and Lechevalier, H. A. (1979). The taxonomic position of the actinomycetic endophytes. In J. C. Gordon, C. T. Wheeler and D. A. Perry (Eds.) Symbiotic nitrogen fixation in the management of temperate forests(pp. 111-122). Corvallis, OR: Forest Research Laboratory, Oregon State University.

    Google Scholar 

  • Lechevalier, M. P., and Lechevalier, H. A. (1989). Genus Frankia Brunchorst 1886, 174AL. In S. T. Williams, M. E. Sharpe and J. G. Holt (Eds.), Bergey’s manual of systematic bacteriology (pp. 2410-2417). Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  • Liu, Q., and Berry, A. M. (1991). The infection process and nodule initiation in the Frankia-Ceanothus root nodule symbiosis. Protoplasma, 163, 82-92.

    Google Scholar 

  • Lumini, E., and Bosco, M. (1996). PCR-restriction fragment length polymorphism identification and host range of single-spore isolates of the flexible Frankia sp. strain UFI 132715. Appl. Environ. Microbiol., 62, 3026-3029.

    PubMed  CAS  Google Scholar 

  • Lumini, E., Bosco, M., and Fernandez, M. P. (1996). PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiol. Ecol., 21, 303-311.

    CAS  Google Scholar 

  • Maggia, L., and Bousquet, J. (1994). Molecular phylogeny of the actinorhizal Hamamelidae and relationships with host promiscuity toward Frankia. Mol. Ecol., 3, 459-467.

    Google Scholar 

  • Marechal, J., Clement, B., Nalin, R., Gandon, C., Orso, S., et al. (2000). A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus. Int. J. Syst. Evol. Microbiol., 50, 781-785.

    PubMed  CAS  Google Scholar 

  • Martin, W., Gierl, A., and Saedler, H. (1989). Molecular evidence for pre-Cretaceous angiosperm origins. Nature, 339, 46-48.

    CAS  Google Scholar 

  • Martin, W., Lydiate, D., Brinkmann, H., Forkmann, G., Saedler, H., and Cerff, R. (1993). Molecular phylogenies in angiosperm evolution. Mol. Biol. Evol., 10, 140-162.

    PubMed  CAS  Google Scholar 

  • Meyen, J. (1829). über das hervorwachsen parasitischer gebilde aus den wurzeln anderer pflanzen. Flora (Jena), 12, 49-64.

    Google Scholar 

  • Mildenhall, D. C. (1980). New Zealand late Cretaceous and Cenozoic plant biogeography: A contribution. Palaeogeogr. Palaecl., 31, 197-233.

    Google Scholar 

  • Miller, I. M., and Baker, D. D. (1985). The initiation, development and structure of root nodules in Elaeagnus angustifolia L. (Elaeagnaceae). Protoplasma, 128, 107-119.

    Google Scholar 

  • Miller, I. M., and Baker, D. D. (1986). Nodulation of actinorhizal plants by Frankia strains capable of both root hair infection and intercellular penetration. Protoplasma, 131, 82-91.

    Google Scholar 

  • Mirza, M. S., Hahn, D., Dobritsa, S. V., and Akkermans, A. D. L. (1994). Phylogenetic studies on uncultured Frankia populations in nodules of Datisca cannabina. Can. J. Microbiol., 40, 313-318.

    PubMed  CAS  Google Scholar 

  • Mirza, M. S., Hameed, S., and Akkermans, A. D. L. (1994). Genetic diversity of Datisca cannabina-compatible Frankia strains as determined by sequence analysis of the PCR-amplified 16S rRNA gene. Appl. Environ. Microbiol., 60, 2371-6.

    PubMed  CAS  Google Scholar 

  • Mirza, M. S., Pawlowski, K., Hafeez, F. Y., Chaudhary, A. H., and Akkermans, A. D. L. (1994). Ultrastructure of the endophyte and localization of nifH transcripts in root nodules of Coriaria nepalensis Wall. by in situhybridization. New Phytol., 126,131-136.

    Google Scholar 

  • Mirza, S. M., Akkermans, W. M., and Akkermans, A. D. L. (1994). PCR-amplified 16S rRNA sequence analysis to confirm nodulation of Datisca cannabina L. by the endophyte of Coriaria nepalensis Wall. Plant Soil, 160,147-152.

    CAS  Google Scholar 

  • Moran, N. A. (1996). Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc. Natl. Acad. Sci. U.S.A., 93,2873-2878.

    PubMed  CAS  Google Scholar 

  • Moran, N. A., Munson, M. A., Baumann, P., and Ishikawa, H. (1993). A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. Lond. B Biol. Sci., 253, 167-171.

    Google Scholar 

  • Muller, J. (1981). Fossil pollen records of extant angiosperms. Bot. Rev., 47, 1-142.

    Google Scholar 

  • Murry, M. A., Konopka, A. S., Pratt, S. D., and Vandergon, T. L. (1997). The use of PCR-based typing methods to assess the diversity of Frankia nodule endophytes of the actinorhizal shrub Ceanothus. Physiol. Plant., 99,714-721.

    CAS  Google Scholar 

  • Murry, M. A., Zhang, Z., and Torrey, J. G. (1985). Effect of oxygen on vesicle formation, acetylene reduction and oxygen-uptake kinetics in Frankia sp. HFPCcI3 isolated from Casuarina cunninghamiana. Can. J. Microbiol., 31, 804-809.

    PubMed  CAS  Google Scholar 

  • Navarro, E., Jaffre, T., Gauthier, D., Gourbiere, F., Rinaudo, G., et al. (1999). Distribution of Gymnostoma spp. microsymbiotic Frankia strains in New Caledonia is related to soil type and to host-plant species. Mol. Ecol., 8, 1781-1788.

    PubMed  Google Scholar 

  • Navarro, E., Nalin, R., Gauthier, D., and Normand, P. (1997). The nodular microsymbionts ofGymnostoma spp. are Elaeagnus-infective Frankia Strains. Appl. Environ. Microbiol., 63, 1610-1616.

    PubMed  CAS  Google Scholar 

  • Nazaret, S., Cournoyer, B., Normand, P., and Simonet, P. (1991). Phylogenetic relationships among Frankia genomic species determined by use of amplified 16S rDNA sequences. J. Bacteriol., 173, 4074-4078.

    Google Scholar 

  • Neave, I. A., Dawson, J. O., and DeLucia, E. H. (1989). Autumnal photosynthesis is extended in nitrogen-fixing European black alder when compared with white basswood: Possible adaptive significance. Can. J. Forest Res., 19, 12-17.

    Google Scholar 

  • Newcomb, W. (1981). Fine structure of the root nodules of Dryas drummondiiRichards (Rosaceae). Can. J. Bot., 29,2500-2514.

    Google Scholar 

  • Newcomb, W., Callaham, D., Torrey, J. G., and Peterson, R. L. (1979). Morphogenesis and fine structure of the actinomycetous endophyte of nitrogen-fixing root nodules of Comptonia peregrina. Bot. Gaz., 140 (Suppl.),S22-S34.

    Google Scholar 

  • Newcomb, W., and Pankhurst, C. E. (1982). Fine structure of actinorhizal nodules of Coriaria arborea (Coriariaceae). New Zeal. J. Bot., 20, 93-103.

    Google Scholar 

  • Newcomb, W., and Wood, S. M. (1987). Morphogenesis and fine structure of Frankia (Actinomycetales): The microsymbiont of nitrogen-fixing actinorhizal root nodules.Int. Rev. Cytol., 109, 1-88.

    PubMed  CAS  Google Scholar 

  • Nick, G., Paget, E., Simonet, P., Moiroud, A., and Normand, P. (1992). The nodular endophytes of Coriaria sp. form a distinct lineage within the genus Frankia. Mol. Ecol., 1, 175-181.

    PubMed  CAS  Google Scholar 

  • Niner, B. M., Brandt, J. P., Villegas, M., Marshall, C. R., Hirsch A. M., and Valdes, M. (1996). Analysis of partial sequences of genes coding for 16S rRNA of actinomycetes isolated from Casuarina equisetifolia nodules in Mexico. Appl. Environ. Microbiol., 62,3034-3036.

    PubMed  CAS  Google Scholar 

  • Normand, P., and Bousquet, J. (1989). Phylogeny of nitrogenase sequences in Frankia and other nitrogen-fixing microorganisms. J. Mol. Evol., 29,436-447.

    PubMed  CAS  Google Scholar 

  • Normand, P., Orso, S., Cournoyer, B., Jeannin, P., Chapelon, C., et al. (1996). Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int. J. Syst. Bacteriol., 46, 1-9.

    PubMed  CAS  Google Scholar 

  • Ochman, H., Elwyn, S., and Moran, N. A. (1999). Calibrating bacterial evolution. Proc. Natl. Acad. Sci. U.S.A., 96, 12638-12643.

    PubMed  CAS  Google Scholar 

  • Ochman, H., and Wilson, A. C. (1987). Evolution in bacteria: Evidence for a universal substitution rate in cellular genomes. J. Mol. Evol., 26, 74-86.

    PubMed  CAS  Google Scholar 

  • Page, R. D. M. (1994). Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol., 43, 58-77.

    Google Scholar 

  • Page, R. D. M., and Charleston, M. A. (1997). From gene to organismal phylogeny: Reconciled trees and the gene tree/species tree problem. Mol. Phylogenet. Evol., 7,231-240.

    PubMed  CAS  Google Scholar 

  • Parsons, R., Silvester, W. B., Harris, S., Gruijters, W. T. M., and Bullivant, S. (1987). Frankia vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol., 83, 728-731.

    PubMed  CAS  Google Scholar 

  • Quispel, A. (1990). Discoveries, discussions, and trends in research on actinorhizal root nodule symbioses before 1978. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankia and actinorhizal plants(pp. 15-33). San Diego, CA: Academic Press.

    Google Scholar 

  • Racette, S., and Torrey, J. G. (1989a). The isolation, culture and infectivity of a Frankia strain from Gymnostoma papuanum (Casuarinaceae). Plant Soil, 118, 165-170.

    Google Scholar 

  • Racette, S., and Torrey, J. G. (1989b). Root nodule initiation in Gymnostoma (Casuarinaceae) and Shepherdia (Elaeagnaceae) induced by Frankia strain HFPGpI1. Can. J. Bot., 67, 2873-2879.

    Google Scholar 

  • Ramirez-Saad, H., Janse, J. D., and Akkermans, A. D. L. (1998). Root nodules of Ceanothus caeruleus contain both the N2-fixing Frankia endophyte and a phylogenetically related Nod-/Fix-actinomycete. Can. J. Microbiol., 44, 140-148.

    CAS  Google Scholar 

  • Ritchie, N. J., and Myrold, D. D. (1999). Geographic distribution and genetic diversity of Ceanothus-infective Frankia strains. Appl. Environ. Microbiol., 65, 1378-1383.

    PubMed  CAS  Google Scholar 

  • Rouvier, C., Prin, Y., Reddell, P., Normand, P., and Simonet, P. (1996). Genetic diversity among Frankia strains nodulating members of the family Casuarinaceae in Australia revealed by PCR and restriction fragment length polymorphism analysis with crushed root nodules. Appl. Environ. Microbiol., 62, 979-985.

    PubMed  CAS  Google Scholar 

  • Roy, A., and Bousquet, J. (1996). The evolution of the actinorhizal symbiosis through phylogenetic analysis of host plants. Acta Bot. Gall., 143, 635-650.

    Google Scholar 

  • Safo-Sampah, S., and Torrey, J. G. (1988). Polysaccharide-hydrolyzing enzymes of Frankia (Actinomycetales). Plant Soil, 112, 89-97.

    CAS  Google Scholar 

  • Sarich, V., and Wison, A. C. (1967). Rates of albumin evolution in primates. Proc. Natl. Acad. Sci. U.S.A., 58, 142-148.

    PubMed  CAS  Google Scholar 

  • Savard, L., Li, P., Strauss, S. H., Chase, M. W., Michaud, M., and Bousquet, J. (1994). Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proc. Natl. Acad. Sci. U.S.A., 91, 5163-5167.

    PubMed  CAS  Google Scholar 

  • Schwencke, J., and Caru, M. (2001). Advances in actinorhizal symbiosis: Host plant-Frankia interactions, biology, and application in arid land reclamation. Arid Land Res. Manag. 15, 285-327.

    CAS  Google Scholar 

  • Silver, W. S. (1964). Root nodule symbiosis. I. Endophyte of Myrica cerifera. J. Bacteriol., 87, 416-421.

    PubMed  CAS  Google Scholar 

  • Silvester, W., Harris, S. L., and Tjepkema, J. D. (1990). Oxygen regulation and hemoglobin. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 157-176). New York, NY: Academic Press.

    Google Scholar 

  • Simonet, P., Navarro, E., Rouvier, C., Reddell, P., Zimpfer, J., et al. (1999). Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Environ. Microbiol., 1,525-533.

    PubMed  CAS  Google Scholar 

  • Sims, H. J., Herendeen, P. S., Lupia, R., Christopher, R. A., and Crane, P. R. (1999). Fossil flowers with Normapolles pollen from the Upper Cretaceous of southeastern North America. Rev. Palaeobot. Palynol., 106, 131-151

    Google Scholar 

  • Soltis, D. E., Soltis, P. S., Chase, M.W., Mort, M. E., Albach, D. C., et al. (2000). Angiosperm phylogeny inferred from 18S rDNA, rbcL, andatpB sequences. Bot. J. Linn. Soc., 133,381-461.

    Google Scholar 

  • Soltis, D. E., Soltis, P. S., Nickrent, D. L., Johnson, L. A., Hahn, W. J., et al. (1997). Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Missouri Bot. Gard., 84, 1-49.

    Google Scholar 

  • Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., et al., (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. U.S.A., 92, 2647-2651.

    PubMed  CAS  Google Scholar 

  • Sullivan, J. T., Patrick, H. N., Lowther, W. L., Scott, D. B., and Ronson, C. W. (1995). Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc. Natl. Acad. Sci. U.S.A., 92, 8985-8989.

    PubMed  CAS  Google Scholar 

  • Swensen, S. M. (1996). The evolution of actinorhizal symbioses: Evidence for multiple origins of the symbiotic association. Amer. J. Bot., 83, 1503-1512.

    Google Scholar 

  • Swensen, S. M, Luthi, J. N., and Rieseberg, L. H. (1998). Datiscaceae revisited: Monophyly and the sequence of breeding system evolution. Syst. Bot., 23,157-169.

    Google Scholar 

  • Swensen, S. M., and Mullin, B.C. (1997). Phylogenetic relationships among actinorhizal plants. The impact of molecular systematics and implications for the evolution of actinorhizal symbioses. Physiol. Plant., 99, 565-573.

    CAS  Google Scholar 

  • Takhtajan, A. (1980). Outline of the classification of flowering plants (Magnoliophyta). Bot. Rev., 46, 225-348.

    Google Scholar 

  • Thompson, J. N. (1989). Concepts of coevolution. Trends Ecol. Evol., 4, 179-183.

    Google Scholar 

  • Thorne, R. T. (1992). Classification and geography of the flowering plants. Bot. Rev., 58, 225-359.

    Google Scholar 

  • Tjepkema, J. D. (1978). The role of oxygen diffusion from the shoots and nodule roots in nitrogen fixation by root nodules of Myrica gale L. Can. J. Bot., 61, 2898-2909.

    Google Scholar 

  • Tjepkema, J. D. (1979). Oxygen relations in leguminous and actinorhizal nodules. In J. C. Gordon, C. T. Wheeler, and D. A. Perry (Eds.), Symbiotic nitrogen fixation in the management of temperate forests (pp. 175-186). Corvallis, OR: Forest Research Laboratory, Oregon State University.

    Google Scholar 

  • Tjepkema, J. D. (1983). Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants. Can. J. Bot., 61, 2924-2929.

    CAS  Google Scholar 

  • Tjepkema, J. D., Cashon, R. E., Beckwith, J., and Schwintzer, C. R. (2002). Hemoglobin in Frankia, a nitrogen-fixing actinomycete. Appl. Environ. Microbiol., 68, 2629-26231.

    PubMed  CAS  Google Scholar 

  • Torrey, J. G. (1976). Initiation and development of root nodules of Casuarina(Casuarinaceae). Amer. J. Bot., 63, 335-344.

    Google Scholar 

  • Torrey, J. G. (1990). Cross-inoculation groups within Frankia. In C. R. Schwintzer and J. D. Tjepkema (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 83-106). New York: Academic Press.

    Google Scholar 

  • Valverde, C., and Wall, L. G. (1999). Regulation of nodulation in Discaria trinervis(Rhamnaceae)-Frankia symbiosis. Can. J. Bot., 77, 1302-1310.

    Google Scholar 

  • Wall, L. G. (2000). The actinorhizal symbiosis. J. Plant Growth Regul., 19, 167-182.

    PubMed  CAS  Google Scholar 

  • Wolters, D. J., van Dijk, C., Zoetendal, E. G., and Akkermans, A. D. L. (1997). Phylogenetic characterization of ineffective Frankia in Alnus glutinosa (L.) Gaertn. nodules from wetland soil inoculants. Mol. Ecol., 6, 971-981.

    PubMed  CAS  Google Scholar 

  • Woronin, M. (1866). über die bei der schwarzerle (Alnus glutinosa) und bei der gewöhnlichen gartenlupine (Lupinus mutabilis) auftretenden wurzelanschwellungen. Mem. Acad. Imp. Sci. St. Petersburg, Ser. 7 T., 10, 1-13.

    Google Scholar 

  • Yokoyama, J., Suzuki, M., Iwatsuki, K., and Hasebe, M. (2000). Molecular phylogeny of Coriaria, with special emphasis on the disjunct distribution. Mol. Phylogenet. Evol., 14, 11-19.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., Lopez, M., and Torrey, J. G. (1984). A comparison of the cultural characteristics and infectivity of Frankia isolates from root nodules of Casuarina species. Plant Soil, 78, 79-90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Swensen, S.M., Benson, D.R. (2007). Evolution Of Actinorhizal Host Plants And Frankia Endosymbionts. In: Pawlowski, K., Newton, W.E. (eds) Nitrogen-fixing Actinorhizal Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3547-0_4

Download citation

Publish with us

Policies and ethics