• Ryogo Hirota
Part of the NATO Science Series book series (NAII, volume 201)


We describe integrable discretization of coupled forms of the well-known soliton equations such as KdV equation, modified KdV equation, sine-Gordon equation and nonlinear Schrödinger equation.


Bilinear Form Soliton Solution Soliton Equation Toda Equation Couple Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hirota, R. (1978) Nonlinear partial difference equations. IV. Bäcklund transformation for the discrete-time toda equation, J. Phys. Soc. Jpn. 45, pp. 321–332.CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Hirota, R. (1981) Discrete analogue of a generalized toda equation, J. Phys. Soc. Jpn. 50, pp. 3785–3791.CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Hirota, R., Tsujimoto, S., and Imai, T. (1993) Difference scheme of soliton equations, in: Future Directions of Nonlinear Dynamics in Physics and Biological Systems, eds. P.L. Christiansen et al., Plenum Press, New York, pp. 7–15.Google Scholar
  4. 4.
    Hirota, R. (2000) Discretization of coupled modified KdV equations, Chaos, Solitons and Fractals, 11, pp. 77–84.CrossRefMathSciNetMATHADSGoogle Scholar
  5. 5.
    Hirota, R. and Iwao, M. (2000) Time-discretization of soliton equations, CRM Proceedings and Lecture Notes, 25, pp. 217–229.MathSciNetGoogle Scholar
  6. 6.
    Suris, Y. B. (1989) Integrable mappings of the standard type, Funk. Anal. Prilozhen., 23, pp. 84–85.MathSciNetGoogle Scholar
  7. 7.
    Hirota, R. and Kimura, K. (2000) Discretization of the Euler top, J. Phys. Soc. Jpn. 69, pp. 627–630.MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Kimura, K. and Hirota, R. (2000) Discretization of the Lagrange top, J. Phys. Soc. Jpn. 69, pp. 3193–3199.MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Papageorgiou, V., Gramaticos, B., and Ramani, A. (1993), Integrable lattices and convergence acceleration algorithms, Phys. Lett. A, 179, p. 111–115.MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Bobenko, A. I. and Pinkall, U. (1996) Discrete surfaces with constant negative gaussian curvature and the Hirota equation, J. Diff. Geom. 43, pp. 527–611.MATHMathSciNetGoogle Scholar
  11. 11.
    Tokihiro, T., Takahashi, D., Matukidaira, J., and Satsuma, J. (1996) From soliton equations to integrable cellular automata through a limiting procedure, Phys. Rev. Lett. 76, pp. 3247–3250.CrossRefADSGoogle Scholar
  12. 12.
    Zabrodin, A. (1997) Discrete Hirota’s equation in quantum integrable models, Int. J. Mod. Phys. B11, pp. 3125–3158.ADSMathSciNetGoogle Scholar
  13. 13.
    Quispel, G. R. W., Robert, J. A. G., and Thompson, C. J. (1989) Integrable mappings and Soliton equations II Physica. D 34, pp. 183–192.ADSGoogle Scholar
  14. 14.
    Yoneyama, T. (1984) Interacting Korteweg-de Vries equations and attractive Soliton interaction, Progr. Theor. Phys. 72, pp. 1081–1088.MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Hirota, R. and Ohta, Y. (1991) Hierarchies of coupled Soliton equations. I, J. Phys. Soc. Jpn. 60, pp. 798–809.CrossRefADSMathSciNetMATHGoogle Scholar
  16. 16.
    Iwao, M. and Hirota, R. (1997) Soliton solutions of a coupled modified KdV equations, J. Phys. Soc. Jpn., 66, pp. 577–588.MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Manakov, S. V. (1974) On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Soviet Phy. JETP. 38(2), pp. 248–253.ADSMathSciNetGoogle Scholar
  18. 18.
    Svinolupov, S. I. (1992) Generalized Schrödinger equations and Jordan Pairs, Commun. Math. Phys. 143, pp. 559–575.MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Ryogo Hirota
    • 1
  1. 1.Professor Emeritus Waseda UniversityTokyoJapan

Personalised recommendations