Handbook of Materials Modeling pp 93-119 | Cite as

# Electronic Structure Methods: Augmented Waves, Pseudopotentials and The Projector Augmented Wave Method

## Abstract

The main goal of electronic structure methods is to solve the Schrödinger equation for the electrons in a molecule or solid, to evaluate the resulting total energies, forces, response functions and other quantities of interest. In this paper we describe the basic ideas behind the main electronic structure methods such as the pseudopotential and the augmented wave methods and provide selected pointers to contributions that are relevant for a beginner. We give particular emphasis to the *projector augmented wave (PAW) method* developed by one of us, an electronic structure method for *ab initio* molecular dynamics with full wavefunctions. We feel that it allows best to show the common conceptional basis of the most widespread electronic structure methods in materials science.

## Keywords

Partial Wave Atomic Region Pseudopotential Method Projector Augmented Wave Partial Wave Expansion## Preview

Unable to display preview. Download preview PDF.

## References

- [1]P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,”
*Phys. Rev.*, 136, B864, 1964.CrossRefMathSciNetADSGoogle Scholar - [2]W. Kohn and L.J. Sham, “Self-consistent equations including exchange and correlation effects,”
*Phys. Rev.*, 140, A1133, 1965.CrossRefMathSciNetADSGoogle Scholar - [3]R.G. Parr and W. Yang,
*Density Functional Theory of Atoms and Molecules*, Oxford University Press, Oxford, 1989.Google Scholar - [4]P.E. Blöchl, “Projector augmented-wave method,”
*Phys. Rev. B*, 50, 17953, 1994.CrossRefADSGoogle Scholar - [5]J.C. Slater, “Wave functions in a periodic potential,”
*Phys. Rev.*, 51, 846, 1937.MATHCrossRefADSGoogle Scholar - [6]J. Korringa, “On the calculation of the energy of a Bloch wave in a metal,”
*Physica (Utrecht)*, 13, 392, 1947.CrossRefMathSciNetADSGoogle Scholar - [7]W. Kohn and J. Rostocker, “Solution of the schrödinger equation in periodic lattices with an application to metallic lithium,”
*Phys. Rev.*, 94, 1111, 1954.MATHCrossRefADSGoogle Scholar - [8]O.K. Andersen, “Linear methods in band theory,”
*Phys. Rev. B*, 12, 3060, 1975.CrossRefADSGoogle Scholar - [9]H. Krakauer, M. Posternak, and A.J. Freeman, “Linearized augmented plane-wave method for the electronic band structure of thin films,”
*Phys. Rev. B*, 19, 1706, 1979.CrossRefADSGoogle Scholar - [10]S. Singh,
*Planewaves, Pseudopotentials and the LAPW method*, Kluwer Academic, Dordrecht, 1994.Google Scholar - [11]J.M. Soler and A.R. Williams, “Simple formula for the atomic forces in the augmented-plane-wave method,”
*Phys. Rev. B*, 40, 1560, 1989.CrossRefADSGoogle Scholar - [12]D. Singh, “Ground-state properties of lanthanum: treatment of extended-core states,”
*Phys. Rev. B*, 43, 6388, 1991.CrossRefADSGoogle Scholar - [13]E. Sjöstedt, L. Nordström, and DJ. Singh, “An alternative way of linearizing the augmented plane-wave method,”
*Solid State Commun.*, 114, 15, 2000.CrossRefADSGoogle Scholar - [14]G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nordström, “Efficient linearization of the augmented plane-wave method,”
*Phys. Rev. B*, 64, 195134, 2001.CrossRefADSGoogle Scholar - [15]H.L. Skriver,
*The LMTO Method*, Springer, New York, 1984.Google Scholar - [16]O.K. Andersen and O. Jepsen, “Explicit, first-principles tight-binding theory,”
*Phys. Rev. Lett.*, 53, 2571, 1984.CrossRefADSGoogle Scholar - [17]O.K. Andersen, T. Saha-Dasgupta, and S. Ezhof, “Third-generation muffin-tin orbitals,”
*Bull. Mater. Sci.*, 26, 19, 2003.CrossRefGoogle Scholar - [18]K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A.K. McMahan, R.T. Scalettar, T. Pruschke, V.I. Anisimov, and D. Vollhardt, “The LDA+DMFT approach to materials with strong electronic correlations,” In: J. Grotendorst, D. Marx, and A. Muramatsu (eds.)
*Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms*,*Lecture Notes*, vol. 10 NIC Series. John von Neumann Institute for Computing, Jülich, p. 175, 2002.Google Scholar - [19]C. Herring, “A new method for calculating wave functions in crystals,”
*Phys. Rev.*, 57, 1169, 1940.MATHCrossRefADSGoogle Scholar - [20]J.C. Phillips and L. Kleinman, “New method for calculating wave functions in crystals and molecules,”
*Phys. Rev*, 116, 287, 1959.MATHCrossRefADSGoogle Scholar - [21]E. Antoncik, “Approximate formulation of the orthogonalized plane-wave method,”
*J. Phys. Chem. Solids*, 10, 314, 1959.CrossRefADSGoogle Scholar - [22]D.R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,”
*Phys. Rev. Lett.*, 43, 1494, 1979.CrossRefADSGoogle Scholar - [23]A. Zunger and M. Cohen, “First-principles nonlocal-pseudopotential approach in the density-functional formalism: development and application to atoms,”
*Phys. Rev. B*, 18, 5449, 1978.CrossRefADSGoogle Scholar - [24]G.P. Kerker, “Non-singular atomic pseudopotentials for solid state applications,”
*J. Phys. C*, 13, L189, 1980.CrossRefADSGoogle Scholar - [25]G.B. Bachelet, D.R. Hamann, and M. Schlüter, “Pseudopotentials that work: from H to Pu,”
*Phys. Rev. B*, 26, 4199, 1982.CrossRefADSGoogle Scholar - [26]N. Troullier and J.L. Martins, “Efficient pseudopotentials for plane-wave calculations,”
*Phys. Rev. B*, 43, 1993, 1991.CrossRefADSGoogle Scholar - [27]J.S. Lin, A. Qteish, M.C. Payne, and V. Heine, “Optimized and transferable nonlocal separable
*ab initio*pseudopotentials,”*Phys. Rev. B*, 47, 4174, 1993.CrossRefADSGoogle Scholar - [28]M. Fuchs and M. Scheffler, “
*Ab initio*pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory,”*Comput. Phys. Commun.*, 119, 67, 1999.MATHCrossRefADSGoogle Scholar - [29]L. Kleinman and D.M. Bylander, “Efficacious form for model pseudopotentials,”
*Phys. Rev. Lett.*, 48, 1425, 1982.CrossRefADSGoogle Scholar - [30]P.E. Blöchl, “Generalized separable potentials for electronic structure calculations,”
*Phys. Rev. B*, 41, 5414, 1990.CrossRefADSGoogle Scholar - [31]D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,”
*Phys. Rev. B*, 41, 17892, 1990.CrossRefADSGoogle Scholar - [32]S.G. Louie, S. Froyen, and M.L. Cohen, “Nonlinear ionic pseudopotentials in spindensity-functional calculations,”
*Phys. Rev. B*, 26, 1738, 1982.CrossRefADSGoogle Scholar - [33]D.R. Hamann, “Generalized norm-conserving pseudopotentials,”
*Phys. Rev. B*, 40, 2980, 1989.CrossRefADSGoogle Scholar - [34]K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, “Implementation of ultrasoft pseudopotentials in
*ab initio*molecular dynamics,”*Phys. Rev. B*, 47, 110142, 1993.CrossRefGoogle Scholar - [35]X. Gonze, R. Stumpf, and M. Scheffler, “Analysis of separable potentials,”
*Phys. Rev. B*, 44, 8503, 1991.CrossRefADSGoogle Scholar - [36]C.G. Van de Walle and P.E. Blöchl, “First-principles calculations of hyperfine parameters,”
*Phys. Rev. B*, 47, 4244, 1993.CrossRefADSGoogle Scholar - [37]M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, “Iterative minimization techniques for
*ab initio*total-energy calculations: molecular dynamics and conjugate-gradients,”*Rev. Mod. Phys.*, 64, 11045, 1992.CrossRefADSGoogle Scholar - [38]R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,”
*Phys. Rev. Lett.*, 55, 2471, 1985.CrossRefADSGoogle Scholar - [39]S. Nosé, “A unified formulation of the constant temperature molecular-dynamics methods,”
*Mol. Phys.*, 52, 255, 1984.CrossRefADSGoogle Scholar - [40]Hoover, “Canonical dynamics: equilibrium phase-space distributions,”
*Phys. Rev. A*, 31, 1695, 1985.Google Scholar - [41]P.E. Blöchl and M. Parrinello, “Adiabaticity in first-principles molecular dynamics,”
*Phys. Rev. B*, 45, 9413, 1992.CrossRefADSGoogle Scholar - [42]P.E. Blöchl, “Second generation wave function thermostat for
*ab initio*molecular dynamics,”*Phys. Rev. B*, 65, 1104303, 2002.CrossRefGoogle Scholar - [43]S.C. Watson and E.A. Carter, “Spin-dependent pseudopotentials,”
*Phys. Rev. B*, 58, R13309, 1998.CrossRefADSGoogle Scholar - [44]G. Kresse and J. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,”
*Phys. Rev. B*, 59, 1758, 1999.CrossRefADSGoogle Scholar - [45]N.A.W. Holzwarth, G.E. Mathews, R.B. Dunning, A.R. Tackett, and Y. Zheng, “Comparison of the projector augmented-wave, pseudopotential, and linearized augmented-plane-wave formalisms for density-functional calculations of solids,”
*Phys. Rev. B*, 55, 2005, 1997.CrossRefADSGoogle Scholar - [46]A.R. Tackett, N.A.W. Holzwarth, and G.E. Matthews, “A projector augmented wave (PAW) code for electronic structure calculations. Part I: atompaw for generating atom-centered functions. A projector augmented wave (PAW) code for electronic structure calculations. Part II: pwpaw for periodic solids in a plane wave basis,”
*Comput. Phys. Commun.*, 135, 329–347, 2001. See also pp. 348–376.MATHCrossRefADSGoogle Scholar - [47]M. Valiev and J.H. Weare, “The projector-augmented plane wave method applied to molecular bonding,”
*J. Phys. Chem. A*, 103, 10588, 1999.CrossRefGoogle Scholar - [48]P.E. Blöchl, “Electrostatic decoupling of periodic images of plane-wave-expanded densities and derived atomic point charges,”
*J. Chem. Phys.*, 103, 7422, 1995.CrossRefADSGoogle Scholar - [49]T.K. Woo, P.M. Margl, P.E. Blöchl, and T. Ziegler, “A combined Car-Parrinello QM/MM implementation for
*ab initio*molecular dynamics simulations of extended systems: application to transition metal catalysis,”*J. Phys. Chem. B*, 101, 7877, 1997.CrossRefGoogle Scholar - [50]O. Bengone, M. Alouani, P.E. Blöchl, and J. Hugel, “Implementation of the projector augmented-wave LDA+U method: application to the electronic structure of NiO,”
*Phys. Rev. B*, 62, 16392, 2000.CrossRefADSGoogle Scholar - [51]B. Arnaud and M. Alouani, “All-electron projector-augmented-wave GW approximation: application to the electronic properties of semiconductors,”
*Phys. Rev. B.*, 62, 4464, 2000.CrossRefADSGoogle Scholar - [52]D. Hobbs, G. Kresse, and J. Hafner, “Fully unconstrained noncollinear magnetism within the projector augmented-wave method,”
*Phys. Rev. B*, 62, 11556, 2000.CrossRefADSGoogle Scholar - [53]H.M. Petrilli, P.E. Blöchl, P. Blaha, and K. Schwarz, “Electric-field-gradient calculations using the projector augmented wave method,”
*Phys. Rev. B*, 57, 14690, 1998.CrossRefADSGoogle Scholar - [54]P.E. Blöchl, “First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen,”
*Phys. Rev. B*, 62, 6158, 2000.CrossRefADSGoogle Scholar - [55]C.J. Pickard and F. Mauri, “All-electron magnetic response with pseudopotentials: NMR chemical shifts,”
*Phys. Rev. B.*, 63, 245101, 2001.CrossRefADSGoogle Scholar - [56]F. Mauri, B.G. Pfrommer, and S.G. Louie, “
*Ab initio*theory of NMR chemical shifts in solids and liquids,”*Phys. Rev. Lett.*, 77, 5300, 1996.CrossRefADSGoogle Scholar - [57]D.N. Jayawardane, CJ. Pickard, L.M. Brown, and M.C. Payne, “Cubic boron nitride: experimental and theoretical energy-loss near-edge structure,”
*Phys. Rev. B*, 64, 115107, 2001.CrossRefADSGoogle Scholar - [58]H. Kageshima and K. Shiraishi, “Momentum-matrix-element calculation using pseudopotentials,”
*Phys. Rev. B*, 56, 14985, 1997.CrossRefADSGoogle Scholar