Theory of Random Heterogeneous Materials

  • S. Torquato


The theoretical prediction of the transport, electromagnetic, and mechanical properties of heterogeneous materials has a long and venerable history, attracting the attention of some of the luminaries of science, including Maxwell [1], Rayleigh [2], and Einstein [3]. Since the early work on the physical properties of heterogeneous materials, there has been an explosion in the literature on this subject [4, 5, 6, 7, 8, 9] because of the rich and challenging fundamental problems it offers and its manifest technological importance.


Percolation Threshold Hard Sphere Heterogeneous Material Effective Property Effective Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.C. Maxwell, Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1873.Google Scholar
  2. [2]
    L. Rayleigh, “On the influence of obstacles arranged in a rectangular order upon the properties of medium,” Phil. Mag., 34, 481–502, 1892.Google Scholar
  3. [3]
    A. Einstein, “Eine neue bestimmung der moleküldimensionen,” Ann. Phys., 19, 289–306, 1906.CrossRefGoogle Scholar
  4. [4]
    R.M. Christensen, Mechanics of Composite Materials, Wiley, New York, 1979.Google Scholar
  5. [5]
    V.V. Jikov, S.M. Kozlov, and O.A. Olenik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.Google Scholar
  6. [6]
    A.V. Cherkaev, Variational Methods for Structural Optimization, Springer-Verlag, New York, 2000.MATHGoogle Scholar
  7. [7]
    G.W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, England, 2002.MATHCrossRefGoogle Scholar
  8. [8]
    S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, New York, 2002.MATHGoogle Scholar
  9. [9]
    M. Sahimi, Heterogeneous Materials I: Linear Transport and Optical Properties, Springer-Verlag, New York, 2003.MATHGoogle Scholar
  10. [10]
    S. Torquato, “Microstructure characterization and bulk properties of disordered two-phase media,” J. Stat. Phys., 45, 843–873, 1986.CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    J.P. Hansen and I.R. McDonald, Theory of Simple Liquids, Academic Press, New York, 1986.Google Scholar
  12. [12]
    R. Zallen, The Physics of Amorphous Solids, Wiley, New York, 1983.CrossRefGoogle Scholar
  13. [13]
    W.B. Russel, D.A. Saville, and W.R. Schowalter, Colloidal Dispersions, Cambridge University Press, Cambridge, England, 1989.Google Scholar
  14. [14]
    J.D. Bernai, “The geometry of the structure of liquids,” In: T. J. Hughel (ed.), Liquids: Structure, Properties, Solid Interactions, Elsevier, New York, pp. 25–50, 1965.Google Scholar
  15. [15]
    S. Torquato, T.M. Truskett, and P.G. Debenedetti, “Is random close packing of spheres well defined?,” Phys. Rev. Lett., 84, 2064–2067, 2000.CrossRefADSGoogle Scholar
  16. [16]
    S. Torquato and F.H. Stillinger, “Multiplicity of generation, selection, and classification procedures for jammed hard-particle packings,” J. Phys. Chem. B, 105, 11849–11853, 2001.CrossRefGoogle Scholar
  17. [17]
    A.R. Kansal, S. Torquato, and F.H. Stillinger, “Diversity of order and densities in jammed hard-particle packings,” Phys. Rev. E, 66, 041109, 1–8, 2002a.CrossRefGoogle Scholar
  18. [18]
    A.R. Kansal, S. Torquato, and F.H. Stillinger, “Computer generation of dense polydisperse sphere packing,” JCP, 117, 8212–8218, 2002b.CrossRefGoogle Scholar
  19. [19]
    A. Donev, I. Cisse, D. Sachs, E.A. Variano, F.H. Stillinger, R. Connelly, S. Torquato, and P.M. Chaikin, Improving the density of jammed disordered packings using ellipsoids, Science, 303, 990–993, 2004.CrossRefADSGoogle Scholar
  20. [20]
    Z. Hashin and S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” J. Appl. Phys., 33, 3125–3131, 1962.MATHCrossRefADSGoogle Scholar
  21. [21]
    G. Grimmet, Percolation, Springer-Verlag, New York, 1989.Google Scholar
  22. [22]
    D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London, 1992.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • S. Torquato
    • 1
  1. 1.Department of Chemistry, PRISM, and Program in Applied & Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations