Skip to main content

The Peierls—Nabarro Model of Dislocations: A Venerable Theory and its Current Development

  • Chapter

Abstract

Dislocations are central to the understanding of mechanical properties of crystalline solids. While continuum elasticity theory describes well the long-range elastic strain of a dislocation for length scales beyond a few lattice spacings, it breaks down near the singularity in the region surrounding the dislocation center, known as the dislocation core. There has been a great deal of interest in describing accurately the dislocation core structure on an atomic scale because of its important role in many phenomena of crystal plasticity [13]. The core properties control, for instance, the mobility of dislocations, which accounts for the intrinsic ductility or brittleness of solids. The core is also responsible for the interaction of dislocations at close distances, which is relevant to plastic deformation.

Keywords

  • Dislocation Density
  • Elastic Energy
  • Burger Vector
  • Screw Dislocation
  • Edge Dislocation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-3286-8_41
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   789.00
Price excludes VAT (USA)
  • ISBN: 978-1-4020-3286-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.S. Duesbery, “Dislocation core and plasticity,” Dislocations in Solids, F.N.R. Nabarro, ed., vol. 8, 67, North-Holland, Amsterdam, 1989.

    Google Scholar 

  2. M.S. Duesbery and G.Y. Richardson, “The dislocation core in crystalline materials,” CRC Crit. Rev. Sol. State Mater. Sci., 17, 1, 1991.

    CrossRef  Google Scholar 

  3. V. Vitek, “Structure of dislocation cores in metallic materials and its impact on their plastic behavior,” Prog. Mater. Sci., 36, 1, 1992.

    CrossRef  Google Scholar 

  4. R. Peierls, “The size of a dislocation,” Proc. Phys. Soc. London, 52, 34, 1940.

    CrossRef  ADS  Google Scholar 

  5. F.R.N. Nabarro, “Dislocations in a simple cubic lattice,” Proc. Phys. Soc. London, 59, 256, 1947.

    CrossRef  ADS  Google Scholar 

  6. J.D. Eshelby, “Edge dislocations in anisotropic materials,” Phil. Mag., 40, 903, 1949.

    MATH  Google Scholar 

  7. V. Vitek, “Intrinsic stacking faults in body-centered cubic crystals,” Phil. Mag., 18, 773, 1968.

    CrossRef  ADS  Google Scholar 

  8. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd edn., Wiley, New York, 1992.

    Google Scholar 

  9. G. Schoeck, “The core energy of dislocations,” Acta Metall. Mater, 127, 3679, 1995.

    Google Scholar 

  10. J.W. Christian and V. Vitek, “Dislocations and stacking faults,” Rep. Prog. Phys., 33, 307, 1970.

    CrossRef  ADS  Google Scholar 

  11. J. Wang, “A new modification of the formulation of peierls stress,” Acta Mater., 44, 1541, 1996.

    CrossRef  Google Scholar 

  12. G. Schoeck, “Peierls energy of dislocations: a critical assessment,” Phys. Rev. Lett., 82, 2310, 1999.

    CrossRef  ADS  Google Scholar 

  13. V. Bulatov and E. Kaxiras, “Semidiscrete variational peierls framework for dislocation core properties,” Phys. Rev. Lett., 78, 4221, 1997.

    CrossRef  ADS  Google Scholar 

  14. G. Lu, V. Bulatov, and N. Kioussis, “A non-planar peierls-nabarro model and its application to dislocation cross-slip,” Phil. Mag., 83, 3539, 2003.

    CrossRef  ADS  Google Scholar 

  15. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys, Rev., 136, B864, 1964.

    CrossRef  MathSciNet  ADS  Google Scholar 

  16. G. Lu, N. Kioussis, V. Bulatov, and E. Kaxiras, “Generalized-stacking-fault energy surface and dislocation properties of aluminum,” Phys. Rev. B, 62, 3099, 2000a.

    CrossRef  ADS  Google Scholar 

  17. W. Benoit, N. Bujard, and G. Gremaud, “Kink dynamics in f.c.c. metals,” Phys. Stat. Sol., (a), 104, 427, 1987.

    CrossRef  ADS  Google Scholar 

  18. G. Lu, N. Kioussis, V. Bulatov, and E. Kaxiras, “The peierls-nabarro model revisited,” Phil. Mag. Lett., 80, 675, 2000b.

    CrossRef  ADS  Google Scholar 

  19. J.R. Rice, “Dislocation nucleation from a crack tip: an analysis based on the peierls concept,” J. Mech. Phys. Sol., 40, 239, 1992.

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Lu, G. (2005). The Peierls—Nabarro Model of Dislocations: A Venerable Theory and its Current Development. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_41

Download citation