Skip to main content

The Peierls—Nabarro Model of Dislocations: A Venerable Theory and its Current Development

  • Chapter
Handbook of Materials Modeling

Abstract

Dislocations are central to the understanding of mechanical properties of crystalline solids. While continuum elasticity theory describes well the long-range elastic strain of a dislocation for length scales beyond a few lattice spacings, it breaks down near the singularity in the region surrounding the dislocation center, known as the dislocation core. There has been a great deal of interest in describing accurately the dislocation core structure on an atomic scale because of its important role in many phenomena of crystal plasticity [13]. The core properties control, for instance, the mobility of dislocations, which accounts for the intrinsic ductility or brittleness of solids. The core is also responsible for the interaction of dislocations at close distances, which is relevant to plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.S. Duesbery, “Dislocation core and plasticity,” Dislocations in Solids, F.N.R. Nabarro, ed., vol. 8, 67, North-Holland, Amsterdam, 1989.

    Google Scholar 

  2. M.S. Duesbery and G.Y. Richardson, “The dislocation core in crystalline materials,” CRC Crit. Rev. Sol. State Mater. Sci., 17, 1, 1991.

    Article  Google Scholar 

  3. V. Vitek, “Structure of dislocation cores in metallic materials and its impact on their plastic behavior,” Prog. Mater. Sci., 36, 1, 1992.

    Article  Google Scholar 

  4. R. Peierls, “The size of a dislocation,” Proc. Phys. Soc. London, 52, 34, 1940.

    Article  ADS  Google Scholar 

  5. F.R.N. Nabarro, “Dislocations in a simple cubic lattice,” Proc. Phys. Soc. London, 59, 256, 1947.

    Article  ADS  Google Scholar 

  6. J.D. Eshelby, “Edge dislocations in anisotropic materials,” Phil. Mag., 40, 903, 1949.

    MATH  Google Scholar 

  7. V. Vitek, “Intrinsic stacking faults in body-centered cubic crystals,” Phil. Mag., 18, 773, 1968.

    Article  ADS  Google Scholar 

  8. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd edn., Wiley, New York, 1992.

    Google Scholar 

  9. G. Schoeck, “The core energy of dislocations,” Acta Metall. Mater, 127, 3679, 1995.

    Google Scholar 

  10. J.W. Christian and V. Vitek, “Dislocations and stacking faults,” Rep. Prog. Phys., 33, 307, 1970.

    Article  ADS  Google Scholar 

  11. J. Wang, “A new modification of the formulation of peierls stress,” Acta Mater., 44, 1541, 1996.

    Article  Google Scholar 

  12. G. Schoeck, “Peierls energy of dislocations: a critical assessment,” Phys. Rev. Lett., 82, 2310, 1999.

    Article  ADS  Google Scholar 

  13. V. Bulatov and E. Kaxiras, “Semidiscrete variational peierls framework for dislocation core properties,” Phys. Rev. Lett., 78, 4221, 1997.

    Article  ADS  Google Scholar 

  14. G. Lu, V. Bulatov, and N. Kioussis, “A non-planar peierls-nabarro model and its application to dislocation cross-slip,” Phil. Mag., 83, 3539, 2003.

    Article  ADS  Google Scholar 

  15. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys, Rev., 136, B864, 1964.

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Lu, N. Kioussis, V. Bulatov, and E. Kaxiras, “Generalized-stacking-fault energy surface and dislocation properties of aluminum,” Phys. Rev. B, 62, 3099, 2000a.

    Article  ADS  Google Scholar 

  17. W. Benoit, N. Bujard, and G. Gremaud, “Kink dynamics in f.c.c. metals,” Phys. Stat. Sol., (a), 104, 427, 1987.

    Article  ADS  Google Scholar 

  18. G. Lu, N. Kioussis, V. Bulatov, and E. Kaxiras, “The peierls-nabarro model revisited,” Phil. Mag. Lett., 80, 675, 2000b.

    Article  ADS  Google Scholar 

  19. J.R. Rice, “Dislocation nucleation from a crack tip: an analysis based on the peierls concept,” J. Mech. Phys. Sol., 40, 239, 1992.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Lu, G. (2005). The Peierls—Nabarro Model of Dislocations: A Venerable Theory and its Current Development. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_41

Download citation

Publish with us

Policies and ethics