Skip to main content

Atomistic Calculation of Mechanical Behavior

  • Chapter
Handbook of Materials Modeling

Abstract

Mechanical behavior is stress-related behavior. This can mean the material response is driven by externally applied stress (or partially), or the underlying processes are mediated by an internal stress field; very often both are true. Due to defects and their collective behavior [1], the spatiotemporal spectrum of stress field in a real material tends to have very large spectral width, with non-trivial coupling between different scales, which is another way of saying that the mechanical behavior of real materials tends to be multiscale. The concept of stress field is usually valid when coarse-grained above a few nm; in favorable circumstances like when crystalline order is preserved locally, it may be applicable down to sub-nm lengthscale [2]. But overall, the atomic scale is where the stress concept breaks down, and atomistic simulations [35] provide very important termination or matching condition for stress-based theories. Large-scale atomistic simulations (chap 2.27) are approaching μm lengthscale and are starting to reveal the collective behavior of defects [6]. But studying defect unit processes is still a main task of atomistic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Phillips, Crystals, Defects and Microstructures: Modeling Across Scales, Cambridge University Press, Cambridge, 2001.

    Book  Google Scholar 

  2. T. Zhu, J. Li, K.J. VanVliet, S. Ogata, S. Yip, and S. Suresh, “Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper,” J. Mech. Phys. Solids, 52, 691–724, 2004.

    Article  MATH  ADS  Google Scholar 

  3. M. Allen and D. Tildesley, Computer Simulation of Liquids, Clarendon Press, New York, 1987.

    MATH  Google Scholar 

  4. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn., Academic, San Diego, 2002.

    Google Scholar 

  5. J. Li, A.H.W. Ngan, and P. Gumbsch, “Atomistic modeling of mechanical behavior,” Acta Mater., 51, 5711–5742, 2003.

    Article  Google Scholar 

  6. F.F. Abraham, R. Walkup, H.J. Gao, M. Duchaineau, T.D. De laRubia, and M. Seager, “Simulating materials failure by using up to one billion atoms and the world’s fastest computer: work-hardening,” Proc. NatlAcad. Sci. USA., 99, 5783–5787, 2002.

    Article  ADS  Google Scholar 

  7. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen, “Softening of nanocrystalline metals at very small grain sizes,” Nature, 391, 561–563, 1998.

    Article  ADS  Google Scholar 

  8. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, “Dislocation-dislocation and dislocation-twin reactions in nanocrystalline Al by molecular dynamics simulation,” Acta Mater., 51, 4135–4147, 2003.

    Article  Google Scholar 

  9. J. Schiotz and K.W. Jacobsen, “A maximum in the strength of nanocrystalline copper,” Science, 301, 1357–1359, 2003.

    Article  ADS  Google Scholar 

  10. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, “Deformationmechanism map for nanocrystalline metals by molecular-dynamics simulation,” Nat. Mater., 3, 43–47, 2004.

    Article  ADS  Google Scholar 

  11. H. VanSwygenhoven, P.M. Derlet, and A.G. Froseth, “Stacking fault energies and slip in nanocrystalline metals,” Nat. Mater., 3, 399–403, 2004.

    Article  ADS  Google Scholar 

  12. A.J. Haslam, V. Yamakov, D. Moldovan, D. Wolf, S.R. Phillpot, and H. Gleiter, “Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation,” Acta Mater., 52, 1971–1987, 2004.

    Article  Google Scholar 

  13. A. Hasnaoui, H. VanSwygenhoven, and P.M. Derlet, “Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation,” Science, 300, 1550–1552, 2003.

    Article  ADS  Google Scholar 

  14. A. Latapie and D. Farkas, “Molecular dynamics investigation of the fracture behavior of nanocrystalline alpha-Fe,” Phys. Rev. B, 69, art. no.-134110, 2004.

    Google Scholar 

  15. M.H. Muser, “Towards an atomistic understanding of solid friction by computer simulations,” Comput. Phys. Commun., 146, 54–62, 2002.

    Article  ADS  Google Scholar 

  16. M. Urbakh, J. Klafter, D. Gourdon, and J. Israelachvili, “The nonlinear nature of friction,” Nature, 430, 525–528, 2004.

    Article  ADS  Google Scholar 

  17. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, “Dislocation nucleation and defect structure during surface indentation,” Phys. Rev. B, 58, 11085–11088, 1998.

    Article  ADS  Google Scholar 

  18. J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton, and S.M. Foiles, “Surface step effects on nanoindentation,” Phys. Rev. Lett., 8716, art. no.-l65507, 2001.

    Google Scholar 

  19. G.S. Smith, E.B. Tadmor, N. Bernstein, and E. Kaxiras, “Multiscale simulations of silicon nanoindentation,” Acta Mater., 49, 4089–4101, 2001.

    Article  Google Scholar 

  20. K.J. VanVliet, J. Li, T. Zhu, S. Yip, and S. Suresh, “Quantifying the early stages of plasticity through nanoscale experiments and simulations,” Phys. Rev. B, 67, 2003.

    Google Scholar 

  21. V. Vitek, “Core structure of screw dislocations in body-centred cubic metals: relation to symmetry and interatomic bonding,” Philos. Mag., 84, 415–428, 2004.

    Article  ADS  Google Scholar 

  22. H. Koizumi, Y Kamimura, and T. Suzuki, “Core structure of a screw dislocation in a diamond-like structure,” Philos. Mag. A, 80, 609–620, 2000.

    Article  ADS  Google Scholar 

  23. C. Woodward and S.I. Rao, “Ab initio simulation of (a/2) ¡ 110] screw dislocations in gamma-TiAl,” Philos. Mag., 84, 401–413, 2004.

    Article  ADS  Google Scholar 

  24. W. Cai, V.V. Bulatob, J.P. Chang, J. Li, and S. Yip, “Periodic image effects in dislocation modelling,” Philos. Mag., 83, 539–567, 2003.

    Article  ADS  Google Scholar 

  25. J. Li, C.-Z. Wang, J.-P. Chang, W. Cai, V.V. Bulatov, K.-M. Ho, and S. Yip, “Core energy and peierls stress of screw dislocation in bcc molybdenum: a periodic cell tight-binding study,” Phys. Rev. B, (in print). See http://164.107.79.177/Archive/Papers/04/Li04c.pdf, 2004.

  26. H.C. Huang, G.H. Gilmer, and T.D. de laRubia, “An atomistic simulator for thin film deposition in three dimensions,” J. Appl. Phys., 84, 3636–3649, 1998.

    Article  ADS  Google Scholar 

  27. L. Dong, J. Schnitker, R.W. Smith, and D.J. Srolovitz, “Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: molecular dynamics simulation study,” J. Appl. Phys., 83, 217–227, 1998.

    Article  ADS  Google Scholar 

  28. D. Holland and M. Marder, “Ideal brittle fracture of silicon studied with molecular dynamics,” Phys. Rev. Lett., 80, 746–749, 1998.

    Article  ADS  Google Scholar 

  29. M.J. Buehler, F.F. Abraham, and H.J. Gao, “Hyperelasticity governs dynamic fracture at a critical length scale,” Nature, 426, 141–146, 2003.

    Article  ADS  Google Scholar 

  30. R. Perez and P. Gumbsch, “Directional anisotropy in the cleavage fracture of silicon,” Phys. Rev. Lett., 84, 5347–5350, 2000.

    Article  ADS  Google Scholar 

  31. N. Bernstein and D.W. Hess, “Lattice trapping barriers to brittle fracture,” Phys. Rev. Lett., 91, art. no.-025501, 2003.

    Google Scholar 

  32. S.J. Zhou, D.M. Beazley, P.S. Lomdahl, and B.L. Holian, “Large-scale molecular dynamics simulations of three-dimensional ductile failure,” Phys. Rev. Lett., 78, 479–482, 1997.

    Article  ADS  Google Scholar 

  33. P. Keblinski, D. Wolf, S.R. Phillpot, and H. Gleiter, “Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation,” Scr. Mater., 41, 631–636, 1999.

    Article  Google Scholar 

  34. M. Mrovec, T. Ochs, C. Elsasser, V. Vitek, D. Nguyen-Manh, and D.G. Pettifor, “Never ending saga of a simple boundary,” Z. Metallk., 94, 244–249, 2003.

    Google Scholar 

  35. M.L. Falk and J.S. Langer, “Dynamics of viscoplastic deformation in amorphous solids,” Phys. Rev. E, 57, 7192–7205, 1998.

    Article  ADS  Google Scholar 

  36. G. Henkelman and H. Jonsson,“Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points,” J. Chem. Phys., 113, 9978–9985, 2000.

    Article  ADS  Google Scholar 

  37. T. Vegge and W. Jacobsen, “Atomistic simulations of dislocation processes in copper,” J. Phys.-Condes. Matter, 14, 2929–2956, 2002.

    Article  ADS  Google Scholar 

  38. V.V. Bulatov, S. Yip, and A.S. Argon, “Atomic modes of dislocation mobility in silicon,” Philos. Mag. A, 72, 453–496, 1995.

    Article  ADS  Google Scholar 

  39. M. Wen and A.H.W. Ngan, “Atomistic simulation of kink-pairs of screw dislocations in body-centred cubic iron,” Acta Mater., 48, 4255–4265, 2000.

    Article  Google Scholar 

  40. B.D. Wirth, G.R. Odette, D. Maroudas, and G.E. Lucas, “Energetics of formation and migration of self-interstitials and self-interstitial clusters in alpha-iron,” J. Nucl. Mater., 244, 185–194, 1997.

    Article  ADS  Google Scholar 

  41. T.D. de laRubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturia, “Multiscale modelling of plastic flow localization in irradiated materials,” Nature, 406, 871–874, 2000.

    Article  ADS  Google Scholar 

  42. R. Devanathan, W.J. Weber, and F. Gao, “Atomic scale simulation of defect production in irradiated 3CSiC,” J. Appl. Phys., 90, 2303–2309, 2001.

    Article  ADS  Google Scholar 

  43. E.B. Tadmor, M. Ortiz, and R. Phillips, “Quasicontinuum analysis of defects in solids,” Philos. Mag. A, 73, 1529–1563, 1996.

    Article  ADS  Google Scholar 

  44. V. Bulatov, F.F. Abraham, L. Kubin, B. Devincre, and S. Yip, “Connecting atomistic and mesoscale simulations of crystal plasticity,” Nature, 391, 669–672, 1998.

    Article  ADS  Google Scholar 

  45. V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, “An adaptive finite element approach to atomic-scale mechanics — the quasicontinuum method,” J. Mech. Phys. Solids, 47, 611–642, 1999.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. R. Madec, B. Devincre, L. Kubin, T. Hoc, and D. Rodney, “The role of collinear interaction in dislocation-induced hardening,” Science, 301, 1879–1882, 2003.

    Article  ADS  Google Scholar 

  47. J.H. Wang, J. Li, S. Yip, S. Phillpot, and D. Wolf, “Mechanical instabilities of homogeneous crystals,” Phys. Rev. B, 52, 12627–12635, 1995.

    Article  ADS  Google Scholar 

  48. I.S. Sokolnikoff, Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua., 2nd edn., Wiley, New York, 1964.

    Google Scholar 

  49. S.C. Hunter, Mechanics of Continuous Media, 2nd edn., E. Horwood, Chichester, 1983.

    MATH  Google Scholar 

  50. J.F. Lutsko, “Stress and elastic-constants in anisotropic solids — molecular dynamics techniques,” J. Appl. Phys., 64, 1152–1154, 1988.

    Article  ADS  Google Scholar 

  51. J.F. Lutsko, “Generalized expressions for the calculation of elastic constants by computer-simulation,” J. Appl. Phys., 65, 2991–2997, 1989.

    Article  ADS  Google Scholar 

  52. J.F. Ray, “Elastic-constants and statistical ensembles in moleculardynamics,” Comput. Phys. Rep., 8, 111–151, 1988.

    Article  ADS  Google Scholar 

  53. T. Cagin and J.R. Ray, “Elastic-constants of sodium from molecular-dynamics,” Phys. Rev. B, 37, 699–705, 1988.

    Article  ADS  Google Scholar 

  54. W. Cai, V.V. Bulatov, J.P. Chang, J. Li, and S. Yip, “Anisotropic elastic interactions of a periodic dislocation array,” Phys. Rev. Lett., 86, 5727–5730, 2001.

    Article  ADS  Google Scholar 

  55. A. Stroh, “Steady state problems in anisotropic elasticity,” J. Math. Phys., 41, 77–103, 1962.

    MATH  MathSciNet  Google Scholar 

  56. J. Hirth and J. Lothe, Theory of Dislocations, 2nd edn., Wiley, New York, 1982.

    Google Scholar 

  57. M.W. Finnis and J.E. Sinclair, “A simple empirical n-body potential for transition metals,” Philos. Mag. A, 50, 45–55, 1984.

    Article  ADS  Google Scholar 

  58. V. Vitek, “Theory of core structures of dislocations in body-centered cubic metals,” Cryst Lattice Defects, 5, 1–34, 1974.

    Google Scholar 

  59. J. Knap and K. Sieradzki, “Crack tip dislocation nucleation in FCC solids,” Phys. Rev. Lett., 82, 1700–1703, 1999.

    Article  ADS  Google Scholar 

  60. J. Schiotz and A.E. Carlsson, “The influence of surface stress on dislocation emission from sharp and blunt cracks in fcc metals,” Philos. Mag. A, 80, 69–82, 2000.

    Article  ADS  Google Scholar 

  61. P. Gumbsch, J. Riedle, A. Hartmaier, and H.F. Fischmeister, “Controlling factors for the brittle-to-ductile transition in tungsten single crystals,” Science, 282, 1293–1295, 1998.

    Article  ADS  Google Scholar 

  62. J.R. Rice and G.E. Beltz, “The activation-energy for dislocation nucleation at a crack,” J. Mech. Phys. Solids, 42, 333–360, 1994.

    Article  MATH  ADS  Google Scholar 

  63. G. Xu, A.S. Argon, and M. Oritz, “Critical configurations for dislocation nucleation from crack tips,” Philos. Mag. A, 75, 341–367, 1997.

    Article  ADS  Google Scholar 

  64. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, “Structural stability and lattice defects in copper: ab initio, tight-binding, and embeddedatom calculations,” Phys. Rev. B, 6322, art. no.-224106, 2001.

    Google Scholar 

  65. A. Stroh, “Dislocations and cracks in anisotropic elasticity,” Phil. Mag., 7, 625, 1958.

    Article  MathSciNet  ADS  Google Scholar 

  66. J. Li, “Atomeye: an efficient atomistic configuration viewer,” Model. Simul. Mater. Sci. Eng., 11, 173–177, 2003.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Li, J. (2005). Atomistic Calculation of Mechanical Behavior. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_40

Download citation

Publish with us

Policies and ethics