Advertisement

Abstract

In the usual case the strength of a crystalline material is determined by the motion of defects such as dislocations or cracks that are present within it. Materials scientists control strength by modifying the microstructure of the material to eliminate defects or flaws and inhibit the motion of dislocations. There is, however, an ultimate limit to the strength that can be obtained in this way. The mechanical stresses that are not relieved by plastic deformation or fracture are supported by elastic deformation, which is, essentially, the stretching of the interatomic bonds. These bonds have finite strength. There is a value of the stress at which bonding itself becomes unstable and the material must fracture or deform, whatever its microstructure. This elastic instability sets an upper bound on mechanical strength that cannot be exceeded, however creative a scientist may be.

Keywords

Shear Strength Maximum Shear Stress Nanoindentation Test Elastic Instability Hydrostatic Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.W. Morris, Jr., C.R. Krenn, D. Roundy et al., In: P.E. Turchi and A. Gonis (eds.), Phase Transformations and Evolution in Materials, TMS, Warrendale, PA, pp. 187–208, 2000.Google Scholar
  2. [2]
    R. Hill and F. Milstein, Phys. Rev. B, 15, 3087–3097, 1977.CrossRefADSGoogle Scholar
  3. [3]
    J. Wang, J. Li, S. Yip et al., Phys. Rev. B, 52,12, 627–635, 1995.ADSGoogle Scholar
  4. [4]
    J.W. Morris, Jr. and C.R. Krenn, Phil. Mag. A, 80, 2827–2840, 2000.CrossRefADSGoogle Scholar
  5. [5]
    A.T. Paxton, P. Gumbsch, and M. Methfessel, Phil. Mag. Lett., 63, 267–274, 1991.CrossRefADSGoogle Scholar
  6. [6]
    W. Xu and J.A. Moriarty, Phys. Rev. B, 54, 6941–6951, 1996.CrossRefADSGoogle Scholar
  7. [7]
    M. Sob, L.G. Wang, and V. Vitek, Mat. Sci. Eng., A234–236, 1075–1078, 1997.Google Scholar
  8. [8]
    D. Roundy, C.R. Krenn, M.L. Cohen et al., Phys. Rev. Lett., 82, 2713–2716 1999.CrossRefADSGoogle Scholar
  9. [9]
    S. Ogata, J. Li, and S. Yip, Phys. Rev. B, in press, 2004.Google Scholar
  10. [10]
    G. Kresse and J. Hafner, J. Phys. Condens. Matter, 6, 8245, 1994.CrossRefADSGoogle Scholar
  11. [11]
    D.M. Clatterbuck, D.C. Chrzan, and J.W. Morris, Jr., Acta Mater., 51, 2271–2283, 2003.CrossRefGoogle Scholar
  12. [12]
    D. Roundy, C.R. Krenn, M.L. Cohen et al., Phil. Mag. A, 81, 1725–1747, 2001.CrossRefADSGoogle Scholar
  13. [13]
    W. Luo, D. Roundy, M. L. Cohen et al., Phys. Rev. B, 66, 94110, 2002.CrossRefADSGoogle Scholar
  14. [14]
    D.M. Clatterbuck, D.C. Chrzan, and J.W. Morris, Jr., Phil. Mag. Lett., 82, 141–147, 2002.CrossRefADSGoogle Scholar
  15. [15]
    M. Friak, M. Sob, and V. Vitek, Proc. Int. Conf. Juniormat 2000, Brno Univ. Technology, Brno, 2001.Google Scholar
  16. [16]
    D.M. Clatterbuck, D.C. Chrzan, and J.W. Morris, Jr., Scripta Mat., 49, 1007, 2003.CrossRefGoogle Scholar
  17. [17]
    C.R. Krenn, D. Roundy, J.W. Morris, Jr. et al., Mat. Sci. Eng. A, A319–321, 111–114, 2001.Google Scholar
  18. [18]
    J.W. Morris, Jr., C.R. Krenn, D. Roundy, and M.L. Cohen, Mat. Sci. Eng. A, 309–310, 121–124, 2001.CrossRefGoogle Scholar
  19. [19]
    J.W. Morris, Jr., D.M. Clatterbuck, D.C. Chrzan et al., Mat. Sci. Forum, 426–432, 4429–4434, 2003.CrossRefGoogle Scholar
  20. [20]
    D.M. Clatterbuck, C.R. Krenn, M.L. Cohen et al., Phys. Rev Lett., 91, 135501, 2003.CrossRefADSGoogle Scholar
  21. [21]
    S. Ogata, J. Li, and S. Yip, Science, 298, 807, 2002.CrossRefADSGoogle Scholar
  22. [22]
    D.F. Bahr, D.E. Kramer, and W.W. Gerberich, Acta Mater, 46, 3605–3617, 1998.CrossRefGoogle Scholar
  23. [23]
    W.D. Nix, Dept. Materials Science, Stanford Univ., Private Communication, 1999.Google Scholar
  24. [24]
    C.R. Krenn, D. Roundy, M.L. Cohen et al., Phys. Rev. B, 65, 13411–13416, 2002.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • J. W. MorrisJr.
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeley

Personalised recommendations