Skip to main content

The Limits of Strength

  • Chapter
Handbook of Materials Modeling

Abstract

In the usual case the strength of a crystalline material is determined by the motion of defects such as dislocations or cracks that are present within it. Materials scientists control strength by modifying the microstructure of the material to eliminate defects or flaws and inhibit the motion of dislocations. There is, however, an ultimate limit to the strength that can be obtained in this way. The mechanical stresses that are not relieved by plastic deformation or fracture are supported by elastic deformation, which is, essentially, the stretching of the interatomic bonds. These bonds have finite strength. There is a value of the stress at which bonding itself becomes unstable and the material must fracture or deform, whatever its microstructure. This elastic instability sets an upper bound on mechanical strength that cannot be exceeded, however creative a scientist may be.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Morris, Jr., C.R. Krenn, D. Roundy et al., In: P.E. Turchi and A. Gonis (eds.), Phase Transformations and Evolution in Materials, TMS, Warrendale, PA, pp. 187–208, 2000.

    Google Scholar 

  2. R. Hill and F. Milstein, Phys. Rev. B, 15, 3087–3097, 1977.

    Article  ADS  Google Scholar 

  3. J. Wang, J. Li, S. Yip et al., Phys. Rev. B, 52,12, 627–635, 1995.

    ADS  Google Scholar 

  4. J.W. Morris, Jr. and C.R. Krenn, Phil. Mag. A, 80, 2827–2840, 2000.

    Article  ADS  Google Scholar 

  5. A.T. Paxton, P. Gumbsch, and M. Methfessel, Phil. Mag. Lett., 63, 267–274, 1991.

    Article  ADS  Google Scholar 

  6. W. Xu and J.A. Moriarty, Phys. Rev. B, 54, 6941–6951, 1996.

    Article  ADS  Google Scholar 

  7. M. Sob, L.G. Wang, and V. Vitek, Mat. Sci. Eng., A234–236, 1075–1078, 1997.

    Google Scholar 

  8. D. Roundy, C.R. Krenn, M.L. Cohen et al., Phys. Rev. Lett., 82, 2713–2716 1999.

    Article  ADS  Google Scholar 

  9. S. Ogata, J. Li, and S. Yip, Phys. Rev. B, in press, 2004.

    Google Scholar 

  10. G. Kresse and J. Hafner, J. Phys. Condens. Matter, 6, 8245, 1994.

    Article  ADS  Google Scholar 

  11. D.M. Clatterbuck, D.C. Chrzan, and J.W. Morris, Jr., Acta Mater., 51, 2271–2283, 2003.

    Article  Google Scholar 

  12. D. Roundy, C.R. Krenn, M.L. Cohen et al., Phil. Mag. A, 81, 1725–1747, 2001.

    Article  ADS  Google Scholar 

  13. W. Luo, D. Roundy, M. L. Cohen et al., Phys. Rev. B, 66, 94110, 2002.

    Article  ADS  Google Scholar 

  14. D.M. Clatterbuck, D.C. Chrzan, and J.W. Morris, Jr., Phil. Mag. Lett., 82, 141–147, 2002.

    Article  ADS  Google Scholar 

  15. M. Friak, M. Sob, and V. Vitek, Proc. Int. Conf. Juniormat 2000, Brno Univ. Technology, Brno, 2001.

    Google Scholar 

  16. D.M. Clatterbuck, D.C. Chrzan, and J.W. Morris, Jr., Scripta Mat., 49, 1007, 2003.

    Article  Google Scholar 

  17. C.R. Krenn, D. Roundy, J.W. Morris, Jr. et al., Mat. Sci. Eng. A, A319–321, 111–114, 2001.

    Google Scholar 

  18. J.W. Morris, Jr., C.R. Krenn, D. Roundy, and M.L. Cohen, Mat. Sci. Eng. A, 309–310, 121–124, 2001.

    Article  Google Scholar 

  19. J.W. Morris, Jr., D.M. Clatterbuck, D.C. Chrzan et al., Mat. Sci. Forum, 426–432, 4429–4434, 2003.

    Article  Google Scholar 

  20. D.M. Clatterbuck, C.R. Krenn, M.L. Cohen et al., Phys. Rev Lett., 91, 135501, 2003.

    Article  ADS  Google Scholar 

  21. S. Ogata, J. Li, and S. Yip, Science, 298, 807, 2002.

    Article  ADS  Google Scholar 

  22. D.F. Bahr, D.E. Kramer, and W.W. Gerberich, Acta Mater, 46, 3605–3617, 1998.

    Article  Google Scholar 

  23. W.D. Nix, Dept. Materials Science, Stanford Univ., Private Communication, 1999.

    Google Scholar 

  24. C.R. Krenn, D. Roundy, M.L. Cohen et al., Phys. Rev. B, 65, 13411–13416, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Morris, J.W. (2005). The Limits of Strength. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_160

Download citation

Publish with us

Policies and ethics