Skip to main content

Hybrid Quantum Mechanics/ Molecular Mechanics Methods and their Application

  • Chapter
Handbook of Materials Modeling

Abstract

Hybrid quantum mechanics (QM)/molecular mechanics (MM) methods allow simulations for much larger systems than accessible by QM methods alone. The size of many systems of topical interest in chemistry and biochemistry prevents efficient and accurate treatment by quantum mechanical ab initio methods. For reactions in condensed phase and surfaces periodic boundary conditions (PBC) can be applied reducing the size of the problem to a unit cell [13]. However, many interesting structure features such as defects or active sites require larger unit cells due to broken space and translation symmetry. A computationally appealing alternative are interatomic potential functions ranging from molecular mechanics force fields to ion-pair potentials. They yield accurate equilibrium structures for the type of systems for which they are parameterized [4], but are usually not suitable to describe the active sites of catalysts with sufficient accuracy. Moreover, unless special modifications are made, they cannot be used to model reactions in which chemical bonding is changed. The cluster model approach is an alternative that makes the calculations on active sites and defects feasible to ab initio methods [5]. Only a fragment of the structure is considered that contains the interesting part, and the surroundings are neglected or approximately included. There exist, however, classes of problems, which require a computational treatment of the whole system. A prominent example is shape selectivity in zeolite catalysis. Although zeolite catalysts with different framework structures have the same active sites in common, they may show very different catalytic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Pisani (ed.), Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials, Lecture Notes in Chemistry, vol. 67, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  2. M. Parrinello, Sol. Stat. Commun., 102, 107–120, 1997.

    Article  ADS  Google Scholar 

  3. D. Marx and J. Hutter, In: J. Grotendorst (ed.), Modern Methods and Algorithms of Quantum Chemistry, NIC Series, vol. 3, NIC Directors, FZ Jülich, Jülich, pp. 301–449, 2000.

    Google Scholar 

  4. J.R. Hill, C.M. Freeman, and L. Subramanian, “Use of force fields in materials mod-eling,” In: K.B. Lipkowitz and D.B. Boyd (eds.), Reviews in Computational Chem-istry, vol. 16, VCH, New York, pp. 141–216, 2000.

    Chapter  Google Scholar 

  5. J. Sauer, Chem. Rev., 89, 199–255, 1989.

    Article  Google Scholar 

  6. A. Warshel and M. Levitt, J. Mol. Biol., 103, 227–249, 1976.

    Article  Google Scholar 

  7. M. Sierka and J. Sauer, J. Phys. Chem. B, 105, 1603–1613, 2001.

    Article  Google Scholar 

  8. J. Gao and M.A. Thompson (eds.), Combined Quantum Mechanical and Molecular Mechanical Methods, ACS Symposium Series, vol. 712, American Chemical Society, Washington, 1998.

    Google Scholar 

  9. P. Sherwood, In: J. Grotendorst (ed.), Modern Methods and Algorithms of Quan-tum Chemistry, NIC Series, vol. 3, NIC Directors, FZ Mich, Mich, pp. 257–277, 2000.

    Google Scholar 

  10. P. von Ragué Schleyer, N.L. Allinger, T. Clark, J. Gastaiger, P.A. Kollman, H.R Schaefer, III, and P.R. Schreiner (eds.), Encyclopedia of Computational Chem-istry, Wiley, Chichester, 1998.

    Google Scholar 

  11. D. Bakowies and W. Thiel, J. Phys. Chem., 100, 10580–10594, 1996.

    Article  Google Scholar 

  12. U. Eichler, CM. Kölmel, and J. Sauer, J. Comput. Chem., 18, 463–477, 1997.

    Article  Google Scholar 

  13. S. Humbel, S. Sieber, and K. Morokuma, J. Chem. Phys., 105, 1959–1967, 1996.

    Article  ADS  Google Scholar 

  14. A.L. Shluger and J.D. Gale, Phys. Rev. B, 54, 962–969, 1996.

    Article  ADS  Google Scholar 

  15. M. Sierka and J. Sauer, J. Chem. Phys., 112, 6983–6996, 2000.

    Article  ADS  Google Scholar 

  16. J. Gao, “Methods and applications of combined quantum mechanical and molecular mechanical potentials,” In: K.B. Lipkowitz and D.B Boyd (eds.), Reviews in Compu-tational Chemistry, vol. 7, VCH, New York, pp. 119–185, 1995.

    Google Scholar 

  17. M.R Ruiz-López and J.L. Rivail, “Combined quantum mechanics and molecular mechanics approaches to chemical and biochemical reactivity,” In: P. von Ragué Schleyer, N.L. Allinger, T. Clark, J. Gastaiger, P.A. Kollman, H.R Schaefer, III, and P.R. Schreiner (eds.), Encyclopedia of Computational Chemistry, Vol. 1, pp. 437–448 Wiley, Chichester, 1998.

    Google Scholar 

  18. J.R. Shoemaker, L.W. Burggraf, and M.S. Gordon, J. Phys. Chem. A, 103, 3245–3251, 1999.

    Google Scholar 

  19. S. Dapprich, I. Komáromi, K.S. Byun, K. Morokuma, and M.J. Frisch, J. Mol. Struct. (Theochem), 461-462, 1–21, 1999.

    Article  Google Scholar 

  20. A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and in Solutions, New York, Wiley, 1991.

    Google Scholar 

  21. L.A. Clark, M. Sierka, and J. Sauer, J. Am. Chem. Soc., 125, 2136–2141, 2003.

    Article  Google Scholar 

  22. U. Eichler, M. Brändie, and J. Sauer, J. Phys. Chem. B, 101, 10035–10050, 1997.

    Article  Google Scholar 

  23. Baerlocher, Ch., W.M. Meier, and D.H. Olson, Atlas of Zeolite Framework Types, Amsterdam, Elsevier, 2001.

    Google Scholar 

  24. M. Sierka and J. Sauer, Faraday Discuss, 106, 41–62, 1997.

    Article  ADS  Google Scholar 

  25. M. Sierka, U. Eichler, J. Datka, and J. Sauer, J. Phys. Chem. B, 102, 6397–6404, 1998.

    Article  Google Scholar 

  26. M. Brändie and J. Sauer, J. Am. Chem. Soc., 120, 1556–1570, 1998.

    Article  Google Scholar 

  27. M. Brändie, J. Sauer, R. Dovesi, and N.M. Harrison, J. Chem. Phys., 109, 10379–10389, 1998.

    Article  ADS  Google Scholar 

  28. J. Sauer and M. Sierka, J. Comput. Chem., 21, 1470–1493, 2000.

    Article  Google Scholar 

  29. M.E. Franke, M. Sierka, U. Simon, and J. Sauer, Phys. Chem. Chem. Phys., 4, 5207–5216, 2002.

    Article  Google Scholar 

  30. T. Demuth, X. Rozanska, L. Benco, J. Hafner, R.A. vanSanten, and H. Toulhoat, J. Catal., 214, 68–77, 2003.

    Article  Google Scholar 

  31. X. Rozanska, R.A. van Santen, T. Demuth, R Hutschka, and J. Hafner, J. Phys. Chem. B, 107, 1309–1315, 2003.

    Article  Google Scholar 

  32. X. Rozanska, R.A. van Santen, R Hutschka, and J. Hafner, J. Am. Chem. Soc., 123, 7655–7667, 2001.

    Article  Google Scholar 

  33. A.M. Vos, X. Rozanska, R.A. Schoonheydt, R.A. van Santen, R Hutschka, and J. Hafner, J. Am. Chem. Soc., 123, 2799–2809, 2001.

    Article  Google Scholar 

  34. T.A. Wesolowski, O. Parisel, Y Ellinger, and J. Weber, J. Phys. Chem. A, 101, 7818–7825, 1997.

    Article  Google Scholar 

  35. L.A. Clark, M. Sierka, and J. Sauer, J. Am. Chem. Soc., 126, 936–947, 2004.

    Article  Google Scholar 

  36. J.R Haw, Phys. Chem. Chem. Phys., 4, 5431–5441, 2002.

    Article  Google Scholar 

  37. G.A. Olah and A. Molnar, Hydrocarbon Chemistry, Willey, New York, 1995.

    Google Scholar 

  38. J.B. Nicholas and J.F. Haw, J. Am. Chem. Soc., 120, 11804–11805, 1998.

    Article  Google Scholar 

  39. M. Iwamoto, H. Furukawa, Y. Mine, R Uemura, S. Mikuriya, and S. Kagawa, J. Chem. Soc. Chem. Commun., 1272–1273, 1986.

    Google Scholar 

  40. D.C. Sayle, C.R.A. Catlow, J.D. Gale, M.A. Perrin, and P. Nortier, J. Mater. Chem., 7, 1635–1639, 1997.

    Article  Google Scholar 

  41. K. Koszinowski, D. Schröder, H. Schwarz, M.C. Holthausen, J. Sauer, H. Koizumi, and P.B. Armentrout, Inorg. Chem., 41, 5882–5890, 2002.

    Article  Google Scholar 

  42. J. Sauer, D. Nachtigallová, and P. Nachtigall, In: G. Centi, B. Wichterlová, and A.T. Bell (eds.), Catalysis by Unique Metal Ion Structures in Solid Matrices. From Sci-ence to Application, Nato Science Series, Sub-Series II, vol. 13, Kluwer Dordrecht, Academic Publishers, pp. 221–234, 2001.

    Google Scholar 

  43. B.L. Trout, A.K. Chakraborty, and A.T. Bell, J. Phys. Chem., 100, 4173–4179, 1996.

    Article  Google Scholar 

  44. K.C. Haas and W.R Schneider, Phys. Chem. Chem. Phys., 1, 639–648, 1999.

    Article  Google Scholar 

  45. E. Broclawik, J. Datka, B. Gill, and P. Kozyra, Phys. Chem. Chem. Phys., 2, 401–405, 2000.

    Article  Google Scholar 

  46. L. Rodriguez-Santiago, M. Sierka, V. Branchadell, M. Sodupe, and J. Sauer, J. Am. Chem. Soc., 120, 1545–1551, 1998.

    Article  Google Scholar 

  47. D. Nachtigallová, P. Nachtigall, M. Sierka, and J. Sauer, Phys. Chem. Chem. Phys., 1, 2019–2026, 1999.

    Article  Google Scholar 

  48. P. Nachtigall, M. Davidová, and D. Nachtigallová, J. Phys. Chem. B, 105, 3510–3517, 2001.

    Article  Google Scholar 

  49. P. Nachtigall, D. Nachtigallová, and J. Sauer, J. Phys. Chem. B, 104, 1738–1745, 2000.

    Article  Google Scholar 

  50. M. Davidová, D. Nachtigallová, R. Bulánek, and P. Nachtigall, J. Phys. Chem. B, 107, 2327–2332, 2003.

    Article  Google Scholar 

  51. P. Nachtigall, M. Davidová, M. Silhan, and D. Nachtigallová, In: R. Aiello, G. Gior-dano, and E Testa (eds.), Studies in Surface Science and Catalysis, vol. 142, Elsevier, Amsterdam, pp. 101–108, 2002.

    Google Scholar 

  52. P. Spuhler, M.C. Holthausen, D. Nachtigallová, P. Nachtigall, and J. Sauer, Chem. Eur. J., 8, 2099–2115, 2002.

    Article  Google Scholar 

  53. M. Silhan, D. Nachtigallová, and P. Nachtigall, Phys. Chem. Chem. Phys., 3, 4791–4795, 2001.

    Google Scholar 

  54. D. Nachtigallová, P. Nachtigall, and J. Sauer, Phys. Chem. Chem. Phys., 3, 1552–1559, 2001.

    Article  Google Scholar 

  55. B. Notari, Adv. Catal., 41, 253–334and references cited therein, 1996.

    Article  Google Scholar 

  56. G. Ricchiardi, A. de Man, and J. Sauer, Phys. Chem. Chem. Phys., 2, 2195–2204, 2000.

    Article  Google Scholar 

  57. C.A. Hijar, R.M. Jacubinas, J. Eckert, N.J. Henson, P.J. Hay, and K.C. Ott, J. Phys. Chem. B, 104, 12157–12164, 2000.

    Article  Google Scholar 

  58. C.M. Zicovich-Wilson, R. Dovesi, J. Phys. Chem. B, 102, 1411–1417, 1998.

    Article  Google Scholar 

  59. T. Atoguchi and S. Yao, J. Mol. Catal A: Chem., 191, 281–288, 2003.

    Article  Google Scholar 

  60. A. Damin, S. Bordiga, A. Zecchina, and C. Lamberti, J. Chem. Phys., 117, 226–237, 2002.

    Article  ADS  Google Scholar 

  61. G. Ricchiardi and J. Sauer, Z. Phys. Chem. (Munich), 209, 21–32, 1999.

    Google Scholar 

  62. G. Ricchiardi, A. Damin, S. Bordiga, C. Lamberti, G. Spano, E Rivetti, and A. Zecchina, J. Am. Chem. Soc., 123, 11409–11419, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Sierka, M., Sauer, J. (2005). Hybrid Quantum Mechanics/ Molecular Mechanics Methods and their Application. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_13

Download citation

Publish with us

Policies and ethics