An important goal of materials science is to have exquisite knowledge of structure-property relations in order to design material microstructures with desired properties and performance characteristics. Although this objective has been achieved in certain cases through trial and error, a systematic means of doing so is currently lacking. For certain physical phenomena at specific length scales, the governing equations are known and the only barrier to achieving the aforementioned goal is the development of appropriate methods to attack the problem.


Correlation Function Topology Optimization Radial Distribution Function Effective Property Random Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M.P. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method”, Comput. Methods Appl. Mech. Eng., 71, 197–224, 1988.CrossRefGoogle Scholar
  2. [2]
    O. Sigmund and S. Torquato, “Design of materials with extreme thermal expansion using a three-phase topology optimization method”, J. Mech. Phys. Solids, 45, 1037–1067, 1997.CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    O. Sigmund, S. Torquato, and I.A. Aksay, “On the design of 1–3 piezocomposites using topology optimization”, J. Mater. Res., 13, 1038–1048, 1998.CrossRefADSGoogle Scholar
  4. [4]
    M.P. Bendsøe, Optimization of Structural Topology, Shape and Material, Springer-Verlag, Berlin, 1995.Google Scholar
  5. [5]
    S. Hyun and S. Torquato, “Designing composite microstructures with targeted properties”, J. Mater. Res., 16, 280–285, 2001.CrossRefADSGoogle Scholar
  6. [6]
    S. Torquato, S. Hyun, and A. Donev, “Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity”, Phys. Rev. Lett., 89,266601, 1–4, 2002.Google Scholar
  7. [7]
    M.P. Bendsøe and O. Sigmund, Topology Optimization, Springer-Verlag, Berlin, 2003.Google Scholar
  8. [8]
    S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer-Verlag, New York, 2002.MATHGoogle Scholar
  9. [9]
    G.W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, England, 2002.MATHCrossRefGoogle Scholar
  10. [10]
    U.D. Larsen, O. Sigmund, and S. Bouwstra, “Design and fabrication of compliant mechanisms and material structures with negative Poisson’s ratio”, J. Micro electromechanical Systems, 6(2), 99–106, 1997.Google Scholar
  11. [11]
    S. Torquato and S. Hyun, “Effective-medium approximation for composite media: realizable single-scale dispersions”, J. Appl. Phys., 89, 1725–1729, 2001.CrossRefADSGoogle Scholar
  12. [12]
    G.W. Milton, “Multicomponent composites, electrical networks and new types of continued fractions. I and II”, Commun. Math. Phys., 111, 281–372, 1987.MATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    S. Torquato and A. Donev, “Minimal surfaces and multifunctionality”, Proc. R. Soc. Lond. A, 460, 1849–1856, 2004.MATHCrossRefMathSciNetADSGoogle Scholar
  14. [14]
    S. Torquato, “Exact conditions on physically realizable correlation functions of random media”, J. Chem. Phys., 111, 8832–8837, 1999.CrossRefADSGoogle Scholar
  15. [15]
    M.Y. Joshi, A Class of Stochastic Models for Porous Media, Ph.D. thesis, University of Kansas, Lawrence, 1974.Google Scholar
  16. [16]
    P.M. Adler, Porous Media — Geometry and Transports, Butterworth-Heinemann, Boston, 1992.Google Scholar
  17. [17]
    A.P. Roberts and M. Teubner, “Transport properties of heterogeneous materials derived from Gaussian random fields: bounds and simulation”, Phys. Rev. E, 51, 4141–4154, 1995.CrossRefADSGoogle Scholar
  18. [18]
    M.D. Rintoul and S. Torquato, “Reconstruction of the structure of dispersions”, J. Colloid Interface Sci, 186, 467–476, 1997.CrossRefGoogle Scholar
  19. [19]
    C.L.Y. Yeong and S. Torquato, “Reconstructing random media”, Phys. Rev. E, 57, 495–506, 1998a.CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    D. Cule and S. Torquato, “Generating random media from limited microstructural information via stochastic optimization”, J. Appl. Phys., 86, 3428–3437, 1999.CrossRefADSGoogle Scholar
  21. [21]
    C.L.Y. Yeong and S. Torquato, “Reconstructing random media: II. Three-dimensional media from two-dimensional cuts”, Phys. Rev. E, 58, 224–233, 1998b.CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    P. Debye, H.R. Anderson, and H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its applications”, J. Appl. Phys., 28, 679–683, 1957.CrossRefADSGoogle Scholar
  23. [23]
    C. Manwart and R. Hilfer, “Reconstruction of random media using Monte Carlo methods”, Phys. Rev. E, 59, 5596–5599, 1999.CrossRefADSGoogle Scholar
  24. [24]
    N. Sheehan and S. Torquato, “Generating microstructures with specified correlation function”, J. Appl. Phys., 89, 53–60, 2001.CrossRefADSGoogle Scholar
  25. [25]
    C. Manwart, S. Torquato, and R. Hilfer, “Stochastic reconstruction of sandstones”, Phys. Rev. E, 62, 893–899, 2000.CrossRefADSGoogle Scholar
  26. [26]
    F.H. Stillinger, S. Torquato, J.M. Eroles, and T.M. Truskett, “Iso-g(2) processes in equilibrium statistical mechanics”, J. Phys. Chem. B, 105, 6592–6597, 2001.CrossRefGoogle Scholar
  27. [27]
    J.R. Crawford, S. Torquato, and F.H. Stillinger, “Aspects of correlation function realizability”, J. Chem. Phys., 2003.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • S. Torquato
    • 1
  1. 1.Department of Chemistry, PRISM, and Program in Applied & Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations