Skip to main content

Density-Functional Perturbation Theory

  • Chapter
Handbook of Materials Modeling

Abstract

The calculation of vibrational properties of materials from their electronic structure is an important goal for materials modeling. A wide variety of physical properties of materials depend on their lattice-dynamical behavior: specific heats, thermal expansion, and heat conduction; phenomena related to the electron-phonon interaction such as the resistivity of metals, superconductivity, and the temperature dependence of optical spectra, are just a few of them. Moreover, vibrational spectroscopy is a very important tool for the characterization of materials. Vibrational frequencies are routinely and accurately measured mainly using infrared and Raman spectroscopy, as well as inelastic neutron scattering. The resulting vibrational spectra are a sensitive probe of the local bonding and chemical structure. Accurate calculations of frequencies and displacement patterns can thus yield a wealth of information on the atomic and electronic structure of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Baroni, P. Giannozzi, and A. Testa, “Green’s-function approach to linear response in solids,” Phys. Rev. Lett., 58, 1861, 1987.

    Article  ADS  Google Scholar 

  2. S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, etc. “Phonons and related crystal properties from density-functional perturbation theory,” Rev. Mod. Phys., 73, 515–562, 2001.

    Article  ADS  Google Scholar 

  3. X. Gonze, “Adiabatic density-functional perturbation theory,” Phys. Rev. A, 52, 1096, 1995.

    Article  ADS  Google Scholar 

  4. J. Gerratt and I.M. Mills, J. Chem. Phys., 49, 1719, 1968.

    Article  ADS  Google Scholar 

  5. R.D. Amos, In: K.P. Lawley (ed.), Ab initio Methods in Quantum Chemistry — I, Wiley, New York, p. 99, 1987.

    Google Scholar 

  6. X. Gonze, “Perturbation expansion of variational principles at arbitrary order,” Phys. Rev. A, 52, 1086, 1995.

    Article  ADS  Google Scholar 

  7. X. Gonze, “First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm,” Phys. Rev. B, 55, 10337, 1997.

    Article  ADS  Google Scholar 

  8. P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, “Ab initio calculation of phonon dispersions in semiconductors,” Phys. Rev. B, 43, 7231, 1991.

    Article  ADS  Google Scholar 

  9. X. Gonze and C. Lee, “Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory,” Phys. Rev. B, 55, 10355, 1997.

    Article  ADS  Google Scholar 

  10. D. Vanderbilt and R.D. King-Smith, “Electric polarization as a bulk quantity and its relation to surface charge,” Phys. Rev. B, 48, 4442, 1993.

    Article  ADS  Google Scholar 

  11. R. Resta, “Macroscopic polarization in crystalline dielectrics: the geometrical phase approach,” Rev. Mod. Phys., 66, 899, 1994.

    Article  ADS  Google Scholar 

  12. M. Born and K. Huang, Dynamical Theory of Crystal Lattices., Oxford University Press, Oxford, 1954.

    Google Scholar 

  13. S. Baroni and R. Resta, “Ab initio calculation of the macroscopic dielectric constant in silicon,” Phys. Rev. B, 33, 7017, 1986.

    Article  ADS  Google Scholar 

  14. P. Umari and A. Pasquarello, “Ab initio molecular dynamics in a finite homogeneous electric field,” Phys. Rev. Lett., 89, 157602, 2002.

    Article  ADS  Google Scholar 

  15. I. Souza, J. Íñiguez, and D. Vanderbilt, “First-principles approach to insulators in finite electric fields,” Phys. Rev. Lett., 89, 117602, 2002.

    Article  ADS  Google Scholar 

  16. D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B, 41, 7892, 1990.

    Article  ADS  Google Scholar 

  17. A. Dal Corso and S. de Gironcoli, “Density-functional perturbation theory for lattice dynamics with ultrasoft pseudo-potentials,” Phys. Rev. B, 62, 273, 2000.

    Article  ADS  Google Scholar 

  18. J. Fritsch and U. Schröder, “Density-functional calculation of semiconductor surface phonons,” Phys. Rep., 309, 209–331, 1999.

    Article  ADS  Google Scholar 

  19. K. Umemoto, R.M. Wentzcovitch, S. Baroni, and S. de Gironcoli, “Anomalous pressure-induced transition(s) in ice XI,” Phys. Rev. Lett., 92, 105502, 2004.

    Article  ADS  Google Scholar 

  20. C. Bungaro, K.M. Rabe, and A. Dal Corso, “First-principle study of lattice instabilities in ferromagnetic Ni2MnGa,” Phys. Rev. B, 68, 134104, 2003.

    Article  ADS  Google Scholar 

  21. C. Bungaro, S. de Gironcoli, and S. Baroni, “Theory of the anomalous Rayleigh dispersion at H/W(110) surfaces,” Phys. Rev. Lett., 77, 2491, 1996.

    Article  ADS  Google Scholar 

  22. M. Lazzeri and F. Mauri, “High-order density-matrix perturbation theory,” Phys. Rev. B, 68, 161101, 2003. [23] PWscf package: http://www.pwscf.org. ABINIT: http://www.abinit.org.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Giannozzi, P., Baroni, S. (2005). Density-Functional Perturbation Theory. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_11

Download citation

Publish with us

Policies and ethics