Biocatalysts in Organic Synthesis

  • V. K. Ahluwalia
  • M. Kidwai

Abstract

The most important conversions in the context of green chemistry is with the help of enzymes. Enzymes are also referred to as biocatalysts and the transformations are referred to as biocatalytic conversions. Enzymes are now easily available and are an important tool in organic synthesis. The earliest biocatalytic conversion known to mankind is the manufacture of ethyl alcohol from molasses, the mother liquor left after the crystallisation of cane sugar from concentrated cane juice. This transformation is brought about by the enzyme ‘invertase’ which converts sucrose into glucose and fructose and finally by the enzyme zymase which converts glucose and fructose into ethyl alcohol. It is well known that most of the antibiotics have been prepared using enzymes (enzymatic fermentation).

Keywords

Lipase Testosterone Progesterone NADPH NADH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kiener, CHEMTECH, September 1995, pp. 31–35.Google Scholar
  2. 2.
    I.M. Shirley and S.C. Taylor, J. Chem. Soc. Chem. Commun., 1983, 954.Google Scholar
  3. 3.
    S.V. Ley and A.J. Redgrave, J. Synlett., 1990, 393.Google Scholar
  4. 4.
    S.V. Ley, F. Sternferd and S. Taylor, Tetrahedron Lett., 1987, 28, 225.CrossRefGoogle Scholar
  5. 5.
    A. Kleinzeller and Z. Fenel, Chem. Listy, 1952, 46, 300; Chem. Abstr., 1953, 47, 4290.Google Scholar
  6. 6.
    D.T. Gibson, J.R. Koch, C.L. Schuld and R.E. Kallio, Biochemistry, 1968, 7, 3795;CrossRefGoogle Scholar
  7. D.T. Gibson, M. Hansley, H. Yoshioka and T.J. Mabry, Biochemistry, 1970, 9, 1626.CrossRefGoogle Scholar
  8. 7.
    T. Hudlicky and J.D. Price, Synlett., 1990, 159;Google Scholar
  9. T. Hudlicky, H. Lund, J.D. Price and F. Rulin, Tetrahedron Leu., 1989, 30, 4053.CrossRefGoogle Scholar
  10. 8.
    C.J. Sih and J.P. Rosazza, in Applications of Biochemical Systems in Organic Chemistry; J.B. Jones, C.J. Sih and D. Perlman, Eds., Wiley, New York, 1976; Part II, pp. 100–102;Google Scholar
  11. G.S. Fanken and R.A. Johnson, Chemical Oxidations with Microorganisms, Marcel Dekker, New York, 1972, pp. 157–164.Google Scholar
  12. 9.
    C.C. Ryerson, D.P. Ballou and C. Walsh, Biochemistry, 1982, 21, 2644;CrossRefGoogle Scholar
  13. N.A. Donoghu, D.B. Norris and P.W. Trudgill, Eur. J. Biochem., 1976, 63, 175.CrossRefGoogle Scholar
  14. 10.
    B.P. Branchaud and C.T. Walsh, J. Am. Chem. Soc., 1985, 107, 2153.Google Scholar
  15. 11.
    J.D. Blck and M.J. Taschner, J. Am. Chem. Soc., 1988, 110, 6892.CrossRefGoogle Scholar
  16. 12.
    Ch. Tamm, Angew. Chem., 1962, 74, 225; Angew. Chem. Int., Ed. 1962, 1, 78;Google Scholar
  17. D. Perlan (ed.), Fermentation Advances, Academic, New York, 1969;Google Scholar
  18. K. Kieslich, Synthesis, 1969, 120;Google Scholar
  19. W. Charney and H.L. Herzog, Microbial Transformations of Steroids, Academic, New York, 1967;Google Scholar
  20. A. Capek, O. Hanc and M. Tadra, Microbial Transformations of Steroids, Academia, Prague, 1966;Google Scholar
  21. M. Raynaud, Ph. Daste, F. Grossin, J.F. Biellmann and R. Wennig, Ann. Inst., Pasteur, 1960, 115, 731;Google Scholar
  22. H. Tizuka and A. Naqito, Microbial Transformation of Steroids and Alkaloids, University Park Press, State College, Pennsylvania, 1967;Google Scholar
  23. J.B. Davis, Petroleum Microbiology, Elsevier, Amsterdam, 1967;Google Scholar
  24. C. Ralledge, Chem. Ind., 1970, 843;Google Scholar
  25. L. Wallen, F.H. Stodola and R.W. Jacksom, Type Reactions in Fermentation Chemistry, U.S. Department of Agriclture, 1959, pp. 185189;Google Scholar
  26. D.W. Ribbons, Ann. Rept. Chem. Soc., London, 1965, 62, 445;Google Scholar
  27. W.C. Evans, Ann. Rept.Chem. Soc., London, 1956, 53, 279;Google Scholar
  28. O. Hayashi and M. Noyaki, Science, 1969, 164, 338;Google Scholar
  29. D.T. Gibson, Science, 1968, 161, 1093;CrossRefGoogle Scholar
  30. Grunther S. Fonken and Roy A. Johnson, Chemical Oxidations with Microorganism, Mercel Dekker, New York, 1972.Google Scholar
  31. 13.
    D.H. Peterson and H.C. Murray, J. Am. Chem. Soc., 1952,174, 1871;CrossRefGoogle Scholar
  32. H.C. Murray and D.H. Peterson, U.S. Patent, 2, 602, 769 (July 8, 1952 ).Google Scholar
  33. 14.
    W.F. Vander Waard, D. Vander Sijde and J. de Flines, Trans. Chim., 1966, 85, 712.Google Scholar
  34. 15.
    P. Crabbe and C. Cassas Campillo, U.S. Patent, 3, 375, 175 (March 26, 1968 ).Google Scholar
  35. 16.
    I.I. Zaretskaya, L.M. Kogan, O.B. Tikhomirova, Jr., D. Sis, N.S. Wulfon, V.I. Zareksu, V.G. Zaikin, G.K. Skrybin and I.V. Torgov, Tetrahedron, 1968, 24, 1595.CrossRefGoogle Scholar
  36. 17.
    J. Ureaht, E. Vischer and A. Wettstein, Held. Chim. Acta, 1996, 43, 1077.Google Scholar
  37. 18.
    J.T. McCurdy and R.D. Garrett, J. Org. Chem., 1968, 33, 660.CrossRefGoogle Scholar
  38. 19.
    F.J. Fried, R.W. Thoma and A. Klingsberg, J. Am. Chem. Soc., 1953, 75, 5764.CrossRefGoogle Scholar
  39. 20.
    R.L. Prairie and P. Talalay, Biochemistry, 1963, 2, 203.CrossRefGoogle Scholar
  40. 21.
    B.P. Branchaud and C.T. Walsh, J. Am. Chem. Soc., 1985, 107, 2153.Google Scholar
  41. 22.
    J.B. Jones and I.J. Jokovac, Org. Synth., 1984, 63, 10.Google Scholar
  42. 23.
    J. Grunwald, B. Wirz, M.P. Scollar and A.M. Klibanov, J. Am. Chem. Soc., 1986, 108, 6732.CrossRefGoogle Scholar
  43. 24.
    A. Brossi, A. Ramel, J. O’Brien and S. Teitel, Chem. Pharm. Bull., 1973, 21, 1839.CrossRefGoogle Scholar
  44. 25.
    B.C. Saunders and B.P. Stark, Tetrahedron, 1967, 23, 1867.CrossRefGoogle Scholar
  45. 26.
    R.Z. Kazandjian and A.M. Klibanov, J. Am. Chem. Soc., 1985, 107, 5448.CrossRefGoogle Scholar
  46. 27.
    Milos Hudlicky, Oxidations in Organic Chemistry, ACS Monograph 186, American Chemical Society, Washington DC, 1990.Google Scholar
  47. 28.
    G.S.Y. Ng., L.C. Yuan, I.J. Jakovac and J.B. Jones, Tetrahedron, 1984, 40, 1235.Google Scholar
  48. 29.
    J.B. Jones and I.J. Jakovac, Can. J. Chem., 1982, 60, 19.CrossRefGoogle Scholar
  49. 30.
    J.B. Jones, Methods Enzymol., 1976, 44, 831.CrossRefGoogle Scholar
  50. 31.
    V. Prelog, Pure Appl. Chem., 1964, 9, 119.CrossRefGoogle Scholar
  51. 32.
    B. Zhou, A.S. Gopalan, F. van Middlesworth, W.R. Shieh and C.J. Sih, J. Am. Chem. Soc., 1983, 105, 5925.CrossRefGoogle Scholar
  52. 33.
    K. Mori, Tetrahedron, 1981, 37, 1341.CrossRefGoogle Scholar
  53. 34.
    E. Kienam, E.K. Hafeli, K.K. Seth and R. Lamed, J. Am. Chem. Soc., 1986, 108, 162.CrossRefGoogle Scholar
  54. 34a.
    R.W. Hoffman, W. Helbig and W. Landner, Tetrahedron Letters, 1982, 23, 3479.CrossRefGoogle Scholar
  55. 35.
    J. Bolte, J.G. Gourey and H. Veschambre, Tetrahedron Lett., 1986, 27, 4051.CrossRefGoogle Scholar
  56. 36.
    R. Bernardi, R. Cardillo and D. Ghiringhelli, J. Chem. Soc. Chem. Commun., 1984, 460.Google Scholar
  57. 37.
    J.K. Lieser, Synth. Commun., 1982, 13 Google Scholar
  58. 38.
    W.H. Zhou, D.Z. Hung, O.C. Deng, Z.P. Zhuang and Z.O. Wang, Nat. Prd. Proc. SinoAm. Symp.,1980, 299; Chem. Abstr.,1983, 88 198545w.Google Scholar
  59. 39.
    M. Bostmembrum-Desrut, G. Douphin, A. Kergomard, M.F. Renard and H. Veschambre, Tetrahedron, 1985, 41, 3679.CrossRefGoogle Scholar
  60. 40.
    C.H. Wong and G.M. Whitesides, J. Am. Chem. Soc.,1983, 105 5012. Biocatalysts in Organic Synthesis 107Google Scholar
  61. 41.
    A.R. Battershy, P.W. Sheldrake, J. Staunton and D.C. Williams, J. Chem. Soc. Perkin Trans., 1976, 1, 1056.CrossRefGoogle Scholar
  62. 42.
    D.R. Dodds and J.B. Jones, J. Chem. Soc. Chem. Commun., 1982, 1080.Google Scholar
  63. 43.
    C.H. Wong and G.M. Whitesides, J. Am. Chem. Soc., 1983, 105, 5012.CrossRefGoogle Scholar
  64. 44.
    B.C. Hirschbein and G.M. Whitesides, J. Am. Chem. Soc., 1982, 104, 4458.CrossRefGoogle Scholar
  65. 45.
    Y. Ito, T. Shibata, M. Arita, H. Sawai and M. Ohno, J. Am. Chem. Soc., 1981, 103, 6739.CrossRefGoogle Scholar
  66. 46.
    H.J. Gais and K.L. Lukas, Angew. Chem., 1984, 96, 140; Angew. Chem. Int. Ed. Engl., 1984, 23, 142.CrossRefGoogle Scholar
  67. 47.
    S. Kobayashi, K. Kamiyama, T. Limori and M. Ohno, Tetrahedron Lett., 1984, 23, 2557.Google Scholar
  68. 48.
    F.C. Huang, L.F.H. Lee, R.S.D. Mittal, P.R. Ravi Kumar, J.A. Chan and C.J. Sih, J. Am. Chem. Soc., 1975, 97, 4144;CrossRefGoogle Scholar
  69. C.H. Chervenka and P.E. Wilson, J. Biol. Chem., 1956, 222, 635.Google Scholar
  70. 49.
    Y.F. Wang, T. Izawa, S. Kabayaski and M. Ohno, J. Am. Chem. Soc., 1982, 104, 6465.CrossRefGoogle Scholar
  71. 50.
    C.J. Francis, J.B. Jones, J. Chem. Soc. Chem. Commun., 1984, 579.Google Scholar
  72. 51.
    Y.F. Wang, C.S. Chen, G. Girdaukas and C.J. Sih, J Am. Chem. Soc., 1984, 106, 3695.CrossRefGoogle Scholar
  73. 52.
    I. Chibata, Immobilized Enzymes — Research and Development, Halsted Press, New York, 1978;Google Scholar
  74. Y. Izumi, I. Chibata and T. Itoh, Angew. Chem., 1978, 90, 187; Angew. Chem. Int. Ed., Engl., 1978, 17, 176.CrossRefGoogle Scholar
  75. 53.
    H.D. Jakubki, P. Kuhl and A. Könnecke, Angew. Chem., 1985 (97); Angew. Chem. Int. Ed. Engl., 1985, 24, 85.CrossRefGoogle Scholar
  76. 54.
    B.J. Abbott, Adv. Appl. Microbiol., 1976, 20, 203.CrossRefGoogle Scholar
  77. 55.
    D.L. Regan, M.D. Dunnill and M.D. Lilly, Biotechnol. Bioeng., 1974, 16, 333.CrossRefGoogle Scholar
  78. 56.
    H.M. Walton, J.E. Eastman and A.E. Staly, Biotechnol. Bioeng., 1973, 447;Google Scholar
  79. J.H. Wilson and M.D. Lilly, Biotechnol. Biology, 1969, 11, 349;CrossRefGoogle Scholar
  80. J.J. Marshall and W.J. Whelan, Chem. Ind., London, 1971, 25, 701;Google Scholar
  81. C. Gruesbeck and H.F. Rase, Ind. End. Chem. Proc. Res. Dey., 1972, 11, 74.CrossRefGoogle Scholar
  82. 57.
    H.H. Weetall, Process Biochem., 1975, 10, 3;Google Scholar
  83. H.H. Weetall, W.P. Vann, W.H. Pitcher, Jr., D.D. Lee, Y.Y. Lee et al., Methods Enzymol, 1976, 44, 776;CrossRefGoogle Scholar
  84. G.W. Strandberg and K.L. Similey, Appl. Microbiol., 1971, 21, 588;Google Scholar
  85. N.B. Havewala and W.H. Pitcher, Jr., Enzyme Eng., 1974, 2, 315;CrossRefGoogle Scholar
  86. N.H. Mermelstein, Food Technol., Chicago, 1975, 29, 20.Google Scholar
  87. 58.
    T. Tosa, T. Sato, T. Mori, Y. Matuo and I. Chibata, Biotechnol. Biology, 1973, 15, 69.CrossRefGoogle Scholar
  88. 59.
    K. Yamamoto, T. Tosa, K. Yamashita and I. Chibata, Eur. J Appl. Microbiol., 1976, 3, 169.CrossRefGoogle Scholar
  89. 60.
    W. Becker and E. Pteil, J. Am. Chem. Soc., 1966, 88, 4299.CrossRefGoogle Scholar
  90. 61.
    B. Chabannes, A. Garib, L. Cronenberger and H. Pacheco, Prep. Biochem., 1983, 12, 395;Google Scholar
  91. R.C. Knudsen and I. Yall, J. Bacteriol., 1972, 112, 569;Google Scholar
  92. S.K. Shapiro and D.J. Ehninger, Anal. Biochem., 1966, 15, 323.CrossRefGoogle Scholar
  93. 62.
    G. Rao, H.O.O. Schmid, K.R. Reddy and J.G. White, Biochem. Biphys. Acta, 1982, 715, 205;CrossRefGoogle Scholar
  94. H. Eibi, Angew. Chem. Int. Ed. Eng.,1984, 23 257 (a review).Google Scholar
  95. 63.
    A.R. Battersby, Chem. Ber., 1984, 20, 611.Google Scholar
  96. 64.
    Y. Izumi, I. Chibata and T. Itoh, Ang. Chem. Int. Ed. Engl., 1978, 17, 176.CrossRefGoogle Scholar
  97. 65.
    Y. Asano, T. Yasuda, Y. Tani and H. Yamada, Agric. Biol. Chem., 1982, 46, 1183.CrossRefGoogle Scholar
  98. 66.
    M. Ohno, Ferment. Ind. Tokyo,1979, 37 836; H. Sato, Jap. Patent 75 140 684, Japan Kokai; Chem. Abstr.,1975, 84 149212;Google Scholar
  99. R.H. Allen, W.B. Jakoby, J. Biol. Chem., 1969, 244, 2078.Google Scholar
  100. 67.
    A. Gross, O. Abril, J.M. Lewis, S. Geresh and G.M. Whitesides, J. Am. Chem. Soc., 1983, 205, 7428.CrossRefGoogle Scholar

Copyright information

© Anamaya Publishers, New Delhi, India 2004

Authors and Affiliations

  • V. K. Ahluwalia
    • 1
  • M. Kidwai
    • 2
  1. 1.Dr. B. R. Ambedkar Centre for Biomedical ResearchUniversity of DelhiDelhiIndia
  2. 2.International Chapter of Green Chemistry in India, Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations