Skip to main content

Proteolysis in Plant Organelles

  • Chapter

Proteolytic processes are intimately involved in the biogenesis and maintenance of chloroplasts and mitochondria. As such, they influence photosynthesis, respiration and other functions of these organelles. The great majority of the proteins found in these organelles are imported post-translationally. The signal peptides directing the precursor proteins into the respective organelles are removed by specific metallo-processing peptidases to yield mature proteins. The released signal peptide is further degraded by another metalloprotease. Oxidatively damaged proteins are rapidly degraded to allow the incorporation of newly synthesized ones into the respective complexes. The size of the photosynthetic antenna is adjusted by proteolytic degradation due to changes in light intensity. Partially assembled complexes or proteins lacking their prosthetic groups are inactive, and thus are being rapidly turned over. Changes in plastid identity and senescence processes are accompanied by massive the degradation of proteins. Although it is not clear which proteases perform most of these activities, a number of organelle proteases have been identified in recent years. ClpCP is an ATP-dependent serine protease complex that is located in the stroma of chloroplasts. Its catalytic function is performed by the ClpP subunit; ClpC serves as the regulatory subunit, responsible for substrate recognition, unfolding and feeding into the catalytic chamber. Mutations in either ClpP or C affect chloroplast biogenesis and functions, and result in defective growth and development. Mitochondria also contain a Clp protease, but here the regulatory subunit is ClpX, an ATPase with a single ATP-binding domain. FtsH is a membrane-bound ATPdependent metalloprotease found in both chloroplasts and mitochondria. Here the catalytic and the ATPase functions are found on the same polypeptide. This enzyme is involved in the repair cycle of photosystem II from photoinhibition by degrading the oxidatively damaged D1 protein of the reaction center. Mutations in FtsH isozymes lead to leaf variegation. DegP is a serine protease, peripherally attached to both sides of the thylakoid membrane, and expected to reside also in mitochondria. Another ATP-dependent serine protease, Lon protease, was identified in both mitochondria and chloroplasts. In addition, several amino- and endopeptidases are expected to reside in both organelles. Most proteases are encoded by multi-gene families. Specific products are targeted to either one of the organelles. However, the functional significance of this gene multiplication, i.e., whether they perform redundant or specific functions, is not clear yet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer

About this chapter

Cite this chapter

Adam, Z. (2004). Proteolysis in Plant Organelles. In: Daniell, H., Chase, C. (eds) Molecular Biology and Biotechnology of Plant Organelles. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3166-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-3166-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2713-0

  • Online ISBN: 978-1-4020-3166-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics