Skip to main content

Sexual Reproduction of Seagrasses: Pollination in the Marine Context

  • Chapter

Abstract

A discussion of sexual reproduction in seagrasses should begin with an examination of their origin and include a comparison with their closest freshwater relatives (i.e. the comparative method). There were no marine plants until angiosperms colonized marine coastal waters sometime in the Cretaceous, which is the earliest date of seagrass fossils (i.e. >100 × 106 years ago; den Hartog, 1970; Larkum and den Hartog, 1989). Prior to that time, bacteria and protists (i.e. algae) were the only marine photosynthetic organisms, as embryophytic plants had evolved earlier as a terrestrial group (Niklas, 1997; Dawes, 1998).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman JD (1986) Mechanistic implications for pollination in the marine angiosperm, Zostera marina L. Aquat Bot 24: 343–353

    Article  Google Scholar 

  • Ackerman JD (1993) Pollen germination and pollen tube growth in the marine angiosperm, Zostera marina L. Aquat Bot 46: 189–202

    Article  Google Scholar 

  • Ackerman JD (1995) Convergence of filiform pollen morphologies in seagrasses: Functional mechanisms. Evol Ecol 9: 139–153

    Article  Google Scholar 

  • Ackerman JD (1997a) Submarine pollination in the marine angiosperm, Zostera marina: Part I. The influence of floral morphology on fluid flow. Amer J Bot 84: 1099–1109

    Article  Google Scholar 

  • Ackerman JD (1997b) Submarine pollination in the marine angiosperm, Zostera marina: Part II. Pollen transport in flow fields and capture by stigmas. Amer J Bot 84: 1110–1119

    Article  Google Scholar 

  • Ackerman JD (1998) Is the limited diversity of higher plants in marine systems due to biophysical limitations for reproduction or evolutionary and physiological constraints? Funct Ecol 12: 979–982

    Google Scholar 

  • Ackerman JD (2000) Abiotic pollen and pollination: Ecological, functional, and evolutionary perspectives. Plant Syst Evol 222: 167–185

    Article  Google Scholar 

  • Ackerman JD (2002) Diffusivity in a marine macrophyte bed: Implications for submarine pollination and dispersal. Amer J Bot 89: 1119–1127

    Google Scholar 

  • Ackerman JD and Okubo A (1993) Reduced mixing in a marine macrophyte canopy. Funct Ecol 7: 305–309

    Article  Google Scholar 

  • Addy CE (1947) Germination of eelgrass seed. J Wildlife Manag 11: 279

    Article  Google Scholar 

  • Arber A (1920) Water Plants. Cambridge University Press. Reprinted 1972 by Verlag Von J. Cramer, Lehre

    Google Scholar 

  • Baldwin JR and Lovvorn JR (1994) Expansion of seagrass habitat by the exotic Zostera japonica, and its use by dabbling ducks and brant in Boundary Bay, British Columbia. Mar Ecol Progr Ser 103: 119–127

    Google Scholar 

  • Balestri V and Cinelli F (2003) Sexual reproductive success in Posidonia oceanica. Aquat Bot 75: 21–32

    Article  Google Scholar 

  • Balestri V, Piazzi L and Cinelli F (1998) In vitro germination and seedling development of Posidonia oceanica. Aquat Bot 60: 83–93

    Article  Google Scholar 

  • Balfour B (1879) On the genus Halophila. Trans Bot Soc Edin 13: 290–343 (+5 plates)

    Google Scholar 

  • Black JM (1913) The flowering and fruiting of Pectinella antarctica (Cymodocea antarctica). Trans Roy Soc South Australia 37: 1–5

    Google Scholar 

  • Bornet DM (1864) Recherches sur le Phucagrostis major Cavol. Ann. Sci. Nat. Bot (Sr. 5)1: 5–51 (+11 plates)

    Google Scholar 

  • Bowman HHM (1922) The distribution and pollination of certain sea-grasses. Mich Acad Sci Papers 22: 3–10 (+4 plates)

    Google Scholar 

  • Buia MC and Mazzella L (1991) Reproductive phenology of the Mediterranean seagrasses Posidonia oceanica (L.) Delile, Cymodocea nodosa(Ucria) Aschers., and Zostera noltii Hornem. Aquat Bot 40: 343–362

    Article  Google Scholar 

  • Cambridge ML, Carstairs SA and Kuo J (1983) An unusual method of vegetative propagation in Australian Zosteraceae. Aquat Bot 15: 201–203

    Article  Google Scholar 

  • Campbell ML (2003) Recruitment and colonisation of vegetative fragments of Posidonia australis and Posidonia coriacea. Aquat Bot 76: 175–184

    Article  Google Scholar 

  • Campey ML, Kendrick GA and Walker DI (2002) Interannual and small-scale spatial variability in sexual reproduction of the seagrasses Posidonia coriacea and Heterozostera tasmanica, southwestern Australia. Aquat Bot 74: 287–297

    Article  Google Scholar 

  • Charlesworth D (1993) Why are unisexual flowers associated with wind pollination and unspecialized pollinators? Am Nat 141: 481–490

    Article  Google Scholar 

  • Churchill AC (1983) Field studies on seed germination and seedling development in Zostera marina L. Aquat Bot 16: 21–29

    Article  Google Scholar 

  • Churchill AC, Nieves G and Brenowitz AH (1985) Floatation and dispersal of eelgrass seeds by gas bubbles. Estuaries 8: 352–354

    Article  Google Scholar 

  • Clavaud MA (1878) Sur le véritable mode de fécondation du Zostera marina. Actes Soc Linn Bordeaux 32: 109–115

    Google Scholar 

  • Cook CDK (1987) Dispersion in aquatic and amphibious vascular plants. In: Crawford RMM (ed) Plant Life in Aquatic Amphibious Habitats, pp 179–190. Blackwell, Oxford

    Google Scholar 

  • Cook CDK (1988) Wind pollination in aquatic angiosperms. Ann Missouri Bot Gard 75: 768–777

    Article  Google Scholar 

  • Cook CDK (1996a) The Aquatic Plant Book. SPB Academic Publishing, New York

    Google Scholar 

  • Cook CDK (1996b) Aquatic and Wetland Plants of India. Oxford University Press, Oxford

    Google Scholar 

  • Cook CDK (1998) The number and kinds of embryo-bearing plants which have become aquatic. Persp Plant Ecol Evol Syst 2: 79–102

    Article  Google Scholar 

  • Cox PA (1988) Hydrophilous pollination. Ann Rev Ecol Syst 19: 261–280

    Article  Google Scholar 

  • Dawes CJ (1998) Marine Botany. 2nd Ed. J Wiley & Sons, New York

    Google Scholar 

  • de Cock AWAM (1978) Germination of the threadlike pollengrains of the seagrass Zostera marina L. Soc Bot Fr Actual Bot 1–2: 145–148

    Google Scholar 

  • de Cock AWAM (1980) Flowering, pollination and fruiting in Zostera marina L. Aquat Bot 9: 201–220

    Article  Google Scholar 

  • den Hartog C (1970) The Seagrass of the World. North Holland, Amsterdam

    Google Scholar 

  • Ducker SC and Knox RB (1976) Submarine pollination in seagrasses. Nature 263: 705–706

    Article  Google Scholar 

  • Ducker SC, Pettitt JM and Knox RB (1978) Biology of Australian seagrasses: Pollen development and submarine pollination in Amphibolis antarctica and Thalassodendron ciliatum (Cymodoceaceae). Aust J Bot 26: 265–285

    Article  Google Scholar 

  • Dudley WR (1893) The genus Phyllospadix. In: The Wilder Quarter-Century Book, pp 403–420 +2 plates. Comstock Press, Ithaca

    Google Scholar 

  • Esau K (1977) Anatomy of Seed Plants. 2nd Ed., p 550. J Wiley, New York

    Google Scholar 

  • Faegri K and van der Pijl L (1979) The Principles of Pollination Ecology. 3rd Revised Edition. Pergamon Press, New York

    Google Scholar 

  • Forgacs OL and Mason SG (1958) The flexibility of wood-pulp fibers. TAPPI 41: 695–704

    CAS  Google Scholar 

  • Goldsmith HL and Mason SG (1967) The microrheology of dispersions. In: Eirich FR (ed) Rheology Theory and Application, Vol 4, pp 85–250. Academic Press, New York

    Google Scholar 

  • Grace JB (1993) The adaptive significance of clonal reproduction in angiosperms: An aquatic perspective. Aquat Bot 44: 159–180

    Article  Google Scholar 

  • Guo Y-H, Sperry R, Cook CDK and Cox PA (1990) The pollination ecology of Zannichellia palustris L. (Zannichelliaceae). Aquat Bot 38: 341–356

    Article  Google Scholar 

  • Harada I (1948) Nuclear type and formation of filament-like pollen in Zostera. Jap J Genet 23: 13–14

    Google Scholar 

  • Harwell MC and Orth RJ (2002) Long-distance dispersal potential in a marine macrophyte. Ecology 83: 3319–3330

    Article  Google Scholar 

  • Hay F, Probert R, Marro J and Dawson M (2000) Towards the ex situ conservation of aquatic angiosperms: A review of seed storage behaviour. In: Black M, KJ Bradford and J Vazquez-Ramos (eds) Seed Biology, Advances and Applications, pp 161–177. Oxford University Press, Oxford

    Google Scholar 

  • Herbert DA (1986) Staminate flowers of Halophila hawaiiana: Description and notes on its flowering ecology. Aquat Bot 25: 97–102

    Article  Google Scholar 

  • Hofmeister W (1852) Zur Entwickelungsgeschichte de Zostera. Bot Zeit 10: 121–131

    Google Scholar 

  • Huang S-Q, Guo Y-H, Robert GW, Shi Y-H and Sun K (2001) Mechanism of underwater pollination in Najas marina (Najadaceae). Aquat Bot 70: 67–78

    Article  Google Scholar 

  • Inglis GJ (2000) Disturbance-related heterogeneity in the seed banks of a marine angiosperm. J Ecol 88: 88–99

    Article  Google Scholar 

  • Iwanami Y, Sasakuma T and Yamada Y (1988) Pollen: Illustrations and Scanning Electronmicrographs. Springer Verlag, Berlin

    Google Scholar 

  • Jackson JBC, Buss LW and Cook RE (1985) Population Biology and Evolution of Clonal Organisms. Yale University Press, New Haven

    Google Scholar 

  • Johansen, DA (1940) Plant Microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Johnson EA and Williams SL (1982) Sexual reproduction in seagrasses: Reports for five Caribbean species with details for Halodule wrightii Aschers. and Syringodium filiforme Kütz. Carib J Sci 18: 61–70

    Google Scholar 

  • Kalff J (2002) Limnology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kamermans P, Hemminga MA, Marbà N, Mateo MA, Mtolera M and Stapel J (2001) Leaf production, shoot demography, and flowering of Thalassodendron ciliatum along the east African coast. Aquat Bot 70: 243–258

    Article  Google Scholar 

  • Kausik SB (1940) A contribution to the embryology of Enalus acoroides (L.fil.) Steud. Proc Indian Acad Sci B 11: 83–99

    Google Scholar 

  • Kausik SB (1941) Structure and development of the staminate flower and the male gametophyte of Enalus acoroides. Proc Indian Acad Sci B 14: 1–16

    Google Scholar 

  • Kausik SB and Rao PKV (1942) The male gametophyte of Halophila ovata Gaudich. Half-yrly J Mys Univ 3: 41–49

    Google Scholar 

  • Keddy J and Patriquin DG (1978) An annual form of eelgrass in Nova Scotia. Aquat Bot 5: 163–170

    Article  Google Scholar 

  • König C (1805) VII. On the flowering of Zostera oceanica Linn. by Philip Cavolini, of Naples. König & Sims Ann Bot 2: 77–91

    Google Scholar 

  • Kuo J and McComb AJ (1989) Seagrass taxonomy, structure and development. In: Larkum AWD, McComb AJ and Shepherd SA(eds) Biology of Seagrasses, pp 6–73. Elsevier, Amsterdam

    Google Scholar 

  • Kuo J and den Hartog C (2001) Seagrass taxonomy and identifi-cation key. In: Short FT and Coles RG (eds) Global Seagrass Research Methods, pp 31–58. Elsevier, Amsterdam

    Google Scholar 

  • Kuo J and Kirkman H (1987) Floral and seedling morphology and anatomy of Thalassodendron pachyrhizum den Hartog (Cymodoceaceae). Aquat Bot 29: 1–17

    Article  Google Scholar 

  • Lacap CDA, Vermaat JE, Rollón RN and Nacorda HM (2002) Propagule dispersal of the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Mar Ecol Progr Ser 235: 75–80

    Google Scholar 

  • Larkum AWD and den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses, pp 143–165, Elsevier, Amsterdam

    Google Scholar 

  • Les DH, Clelad MA and Waycott MA (1997) Phylogenetic studies in Alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22: 443–463

    Article  Google Scholar 

  • Les DH, Moody ML, Jacobs SWL and Bayer (2002) Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Syst Bot 27: 468–484

    Google Scholar 

  • McConchie CA (1982) The diversity of hydrophilous pollination in monocotyledons. In:Williams EG, Knox RB, Gilbert JH and Bernhardt P (eds) Pollination '82, pp 148–165. University of Melbourne, Melbourne

    Google Scholar 

  • McConchie CA and Knox RB (1989a) Pollination and reproductive biology of seagrasses. In: Larkum AWD, McComb AJ and Shepherd SA (eds) Biology of Seagrasses, pp 74–111. Elsevier, Amsterdam

    Google Scholar 

  • McConchie CA and Knox RB (1989b). Pollen-stigma interaction in the seagrass Posidonia australis. Ann Bot 63: 235–248

    Google Scholar 

  • McMillan C (1989) Timing of anthesis for staminate flowers of Halophila engelmannii Aschers. from Texas and Halophila decipiens Ostenfeld from Panama. Aquat Bot 33: 141–147

    Article  Google Scholar 

  • McMillan C and Jewett-Smith J (1988) The sex ratio and fruit production of laboratory-germinated seedlings of Halophila engelmannii Aschers. (Hydrocharitaceae) from Redfish Bay, Texas. Aquat Bot 32: 329–339

    Article  Google Scholar 

  • Meling-Lopez AE and Ibarra-Obando SE (1999) Annual life cycles of two Zostera marina populations in the Gulf of California: Contrasts in seasonality and reproductive effort. Aquat Bot 65: 59–69

    Article  Google Scholar 

  • Niklas KJ (1992) Plant Biomechanics. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (1997) The Evolutionary Biology of Plants. University of Chicago Press, Chicago

    Google Scholar 

  • Nixon SW (1988) Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnol Oceanogr 33: 1005–1025

    CAS  Google Scholar 

  • Obeso JR (2002) The costs of reproduction in plants. New Phytol 155: 321–348

    Article  Google Scholar 

  • Okubo A, Ackerman JD and Swaney DP (2002) Passive diffusion in ecosystems. In: Okubo A and Levin S (eds) Diffusion and Ecological Problems: New Perspectives, pp 31–106. Springer Verlag, New York

    Google Scholar 

  • Olesen B (1999) Reproduction in Danish eelgrass (Zostera marina L) stands: Size dependence and biomass partitioning. Aquat Bot 65: 209–219

    Article  Google Scholar 

  • Parthasarathy N, Ravikumar K and Ramamurthy K (1988) Floral biology and ecology of Halophila beccarii Aschers. (Hydrocharitaceae). Aquat Bot 31: 141–151

    Article  Google Scholar 

  • Pascasio JF and Santos JK (1930) A critical morphological study of Thalassia hemprichii (Ehrenb.) Aschers. from the Philippines. Nat Appl Sci Bull Univ Philipp 1: 1–19

    Google Scholar 

  • Pedersen O and Sand-Jensen K (1993) Water transport in submerged macrophytes. Aquat Bot 44: 385–406

    Article  Google Scholar 

  • Pettitt JM (1976) Pollen wall and stigma surface in the marine angiosperms Thalassia and Thalassodendron. Micron 7: 21–32

    Google Scholar 

  • Pettitt JM (1980) Reproduction in seagrasses: Nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann Bot 45: 257–271

    CAS  Google Scholar 

  • Pettitt JM (1981) Reproduction in seagrasses: Pollen development in Thalassia hemprichii, Halophila stipulacea, and Thalassodendron ciliatum. Ann Bot 48: 609–622

    Google Scholar 

  • Pettitt JM (1984) Aspects of flowering and pollination in marine angiosperms. Oceanogr Mar Biol Ann Rev 22: 315–342

    Google Scholar 

  • Pettitt JM and Jermy AC (1975) Pollen in hydrophilous angiosperms. Micron 5: 377–405

    Google Scholar 

  • Pettitt J, Ducker S and Knox B (1981) Submarine pollination. Sci Amer 244: 131–143

    Article  Google Scholar 

  • Philbrick CT and Anderson GJ (1987) Implications of pollen/ovule ratios and pollen size for the reproductive biology of Potamogeton and autogamy in aquatic angiosperms. Syst Bot 12: 98–105

    Article  Google Scholar 

  • Philbrick CT and Les DH (1996) Evolution of aquatic angiosperm reproductive systems. Bioscience 46: 813–826

    Article  Google Scholar 

  • Phillips RC, McMillan C and Bridges KW (1983) Phenology of eelgrass—Zostera marina L.—along latitudinal gradients in North America. Aquat Bot 15: 145–156

    Article  Google Scholar 

  • Rasheed MA (1999) Recovery of experimentally created gaps within a tropical Zostera capricorni (Ashers.) seagrass meadow, Queensland Australia. J Exp Mar Biol Ecol 235: 183–200

    Article  Google Scholar 

  • Rathcke B and Lacey EP (1985) Phenological patterns of terrestrial plants. Ann Rev Ecol Syst 16: 179–214

    Article  Google Scholar 

  • Raven PH, Evert RF and Eichhorn SE (1999) Biology of Plants. 6th Ed. W.H. Freeman and Company, New York

    Google Scholar 

  • Reusch TBH (2000) Pollination in the marine realm: Microsatellites reveal high outcrossing rates and multiple paternity in eelgrass Zostera marina. Heredity 85: 459–464

    Article  PubMed  Google Scholar 

  • Reusch, TBH (2001) New markers—old questions: Population genetics of seagrasses. Mar Ecol Prog Ser 211: 261–274

    CAS  Google Scholar 

  • Rollón RN, de Ruyter van Steveninck ED and van Vierssen W (2003) Spatio-temporal variation in sexual reproduction of the tropical seagrass Enhalus acoroides (L.f.) Royle in Cape Bolinao, NW Philippines. Aquat Bot 76: 339–354

    Article  Google Scholar 

  • Rosenberg O (1901a) über die Pollenbildung von Zostera. Meddh. Stockh. Högskolas. Bot Inst 4: 3–21

    Google Scholar 

  • Rosenberg O (1901b) Über die Embryologie von Zostera marina L. Bihang Till K. Srenska Vet. Arad Hand lingar 27: 3–24 +2 plates

    Google Scholar 

  • Ruckleshaus MH (1995) Estimation of outcrossing rates and of inbreeding depression in a population of the marine angiosperm, Zostera marina. Mar Biol 123: 583–593

    Article  Google Scholar 

  • Schindler DW (1991) Lakes and oceans as functional wholes. In: Barnes RSK and Mann KH (eds) Fundamentals of Aquatic Ecology, pp 91–107. Blackwell Scientific Pub., London

    Google Scholar 

  • Schlueter MA and Guttman SI (1998) Gene flow and genetic diversity of turtle grass, Thalassia testudinum, Banks ex König, in the lower Florida Keys. Ann Bot 61: 147–164

    Google Scholar 

  • Sculthorpe CD (1967) The Biology of Aquatic Vascular Plants. Edward Arnold, London (Reprinted 1985 Koeltz Scientific, Königstein)

    Google Scholar 

  • Siland er JA, Jr (1985) Microevolution in clonal plants. In: Jackson JBC, Buss L W and Cook RE (eds) Population Biology and Evolution of Clonal Organisms. pp 107–152. Yale University Press, New Haven

    Google Scholar 

  • Smith NM (2000) Canopy structure, water flow, and pollination in two Posidonia species. Biol Mar Medit 7: 135–138

    Google Scholar 

  • Smith NM and Walker DI (2002) Canopy structure and pollination biology of the seagrasses Posidonia australis and P. sinuosa (Posidoniaceae). Aquat Bot 74: 57–70

    Article  Google Scholar 

  • Stevenson JC (1988) Comparative ecology of submerged grass beds in freshwater, estuarine and marine environments. Limnol Oceanogr 33: 867–893

    CAS  Google Scholar 

  • Stewart JG and Rüdenberg L (1980) Microsporocyte growth and meiosis in Phyllospadix torreyi, a marine monocotyledon. Amer J Bot 67: 949–954

    Article  Google Scholar 

  • Svedelius N (1904) On the Life-History of Enalus acoroides. Ann Roy Bot. Gard Peradeniya 2: 267–298

    Google Scholar 

  • Taylor ARA (1957a) Studies of the development of Zostera marina L. I. The embryo and the seed. Can J Bot 35: 477–499

    Article  Google Scholar 

  • Taylor ARA (1957b) Studies of the development of Zostera marina L. II. Germination and seedling development. Can J Bot 35: 681–695

    Google Scholar 

  • Tomlinson PB (1982) Anatomy of the Monocotyledon: VII Helobiae (Alismatidae). Oxford University Press, NY

    Google Scholar 

  • Tomlinson PB and Posluszny U (2001) Generic limits in the seagrass family Zosteraceae. Taxon 50: 429–437

    Article  Google Scholar 

  • Turner T (1983) Facilitation as a successional mechanism in a rocky intertidal community. Am Nat 121: 729–738

    Article  Google Scholar 

  • Van der Pijl L (1972) Principles of Dispersal in Higher Plants. 2nd Ed. Springer-Verlag, Berlin

    Google Scholar 

  • Verduin JJ (1996) In situ pollination in Amphibolis antarctica (Labill.) Sonder et Ashers. ex Ashers. and its relationship to hydrodynamics. In: Kuo J, Philips RC, Walker DI and Kirkman H (eds) Seagrass Biology: Proceedings of an International Workshop, pp 123–128. University of Western Australia, Nedlands

    Google Scholar 

  • Verduin JJ, Walker DI and Kuo J (1996) In situ submarine pollination in the seagrass Amphibolis antarctica: Research notes. Mar Ecol Prog Ser 133: 307–309

    Google Scholar 

  • Verduin JJ, Backhaus JO and Walker DI (2000) Estimates of pollen dispersal and capture within submerged Amphibolis antarctica meadows. Biol Mar Medit 7: 152–155

    Google Scholar 

  • Visser AW (2001) Hydromechanical signals in the plankton. Mar Ecol Progr Ser 222: 1–24

    Google Scholar 

  • Walker DI, Olesen B and Phillips RC (2001) Reproduction and phenology in seagrasses. In: Short FT and Coles RG (eds) Global Seagrass Research Methods, pp 59–78. Elsevier, Amsterdam

    Google Scholar 

  • Waycott M and Sampson JF (1997) The mating system of an hydrophilous angiosperm Posidonia australis (Posidoniaceae). Amer J Bot 84: 621–665

    Article  Google Scholar 

  • Waycott, M, Walker DI and James SH (1996) Genetic uniformity in Amphibolis antarctica, a dioecious seagrass. Heredity 76: 578–585

    Google Scholar 

  • Williams GC (1975) Sex and Evolution. Princeton University Press, Princeton

    Google Scholar 

  • Williams SL (1995) Surfgrass reproduction: Reproduction, phenology, resource allocation, and male rarity. Ecology 76: 1953–1970

    Article  Google Scholar 

  • Yamashita T (1976) Über die Pollenbildung bei Halodule pinifolia und H. uninervis. Beitr Biol Pflanzen 52: 217–226

    Google Scholar 

  • Zakaria MH, Sidik BJ and Hishamuddin O (1999) Flowering, fruiting and seedling of Halophila beccarii Aschers. (Hydrocharitaceae) from Malaysia. Aquat Bot 65: 199–207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ackerman, J.D. (2007). Sexual Reproduction of Seagrasses: Pollination in the Marine Context. In: SEAGRASSES: BIOLOGY, ECOLOGYAND CONSERVATION. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2983-7_4

Download citation

Publish with us

Policies and ethics