Skip to main content

Zooplankton Habitats of the Greenland Sea

An Experimental Laboratory for Studies of Pelagic Ecology

  • Conference paper
Jan Mayen Island in Scientific Focus

Part of the book series: NATO Science Series ((NAIV,volume 45))

Abstract

The physical oceanography of the Greenland Sea generates three different ecological domains separated by two frontal systems (East Greenland Polar Front, Arctic Front). They are subject to the same light regime which makes the Greenland Sea an ideal place to study physical-biological coupling on various spatial scales. As the three domains represent different marine provinces and climate zones, the effect of climate change on marine ecosystems can be studied very effectively. Examples of physical-biological coupling and phytoplankton-zooplankton relationships in the three domains are shown together with aspects of carbon flux and the contribution of zooplankton. The necessity for seasonal studies in future programs is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aken HM van, D Quadfasel, A Warpakowski 1991. The Arctic front in the Greenland Sea during February 1989: Hydrographic and biological observations. Journal of Geophysical Research 96, 4739–4750.

    Article  Google Scholar 

  • Alexander V and HJ Niebauer 1981. Oceanography of the Eastern Bering Sea ice-edge zone in spring. Limnology and Oceanography 26, 111–125.

    Article  Google Scholar 

  • Anderson LG, EP Jones, KP Koltermann, P Schlosser, JH Swift, and DWR Wallace 1989. The first oceanographic section across the Nansen Basin in the Arctic Ocean. Deep-Sea Research 36, 475–482.

    Article  Google Scholar 

  • Bauerfeind E, Bodungen B von, K Arndt, and W Koeve 1994. Particle flux, and composition of sedimenting matter, in the Greenland Sea. Journal of Marine Systems 5, 411–423.

    Article  Google Scholar 

  • Bourke RH, AM Weigel, and RG Paquette 1988. The westward turning branch of the West Spitsbergen Current. Journal of Geophysical Research 93, 14065–14077.

    Article  Google Scholar 

  • Daly K 1997. Flux of particulate matter through copepods in the Northeast Water Polynya. Journal of Marine Systems10, 319–342.

    Article  Google Scholar 

  • Ekman S 1967. Zoogeography of the Sea. Sidgwick and Jackson, London. 417 pp.

    Google Scholar 

  • Gascard JC, C Kergomard, PF Jeannin, and M Fily 1988. Diagnostic study of the Fram Strait Marginal Ice Zone during summer from 1983 and 1984 Marginal Ice Zone Experiment. Lagrangian observations. Journal of Geophysical Research 93, 3613–3641.

    Article  Google Scholar 

  • Hebbeln D and G Wefer 2001. Effects of ice coverage and ice-rafted material on sedimentation in the Fram Strait. Nature 350, 409–411.

    Article  Google Scholar 

  • Hirche HJ 1989a. Egg production of the Arctic copepod Calanus glacialis - laboratory experiments. Marine Biology 103 311–318

    Article  Google Scholar 

  • Hirche HJ 1989b. Spatial distribution of digestive enzyme activities of Calanus finmarchicus and C. hyperboreus in Fram Strait/Greenland Sea. Journal of Plankton Research11, 431–443.

    Article  Google Scholar 

  • Hirche HJ 1991. Distribution of dominant calanoid copepod species in the Greenland Sea during late fall. Polar Biology11, 351–362.

    Article  Google Scholar 

  • Hirche HJ, M Baumann, G Kattner, and R Gradinger 1991. Plankton distribution and the impact of copepod grazing on primary production in Fram Strait, Greenland Sea. Journal of Marine Systems 2, 477–494.

    Article  Google Scholar 

  • Hirche HJ and Kattner G 1993. Egg production and lipid content of Calanus glacialis in spring: indication of a food-dependent and food-independent reproductive mode. Marine Biology117, 615–622.

    Article  Google Scholar 

  • Hirche HJ 1997. The life cycle of the copepod Calanus hyperboreus in the Greenland Sea. Marine Biology 124, 607–618.

    Article  Google Scholar 

  • Hirche HJ and S Kwasniewski 1997. Distribution, reproduction and development of Calanus species in the Northeast Water in relation to environmental conditions. Journal of Marine Systems 10, 299–317.

    Article  Google Scholar 

  • Honjo S, SJ Manganini, and G Wefer 1987. Annual particle flux and a winter outburst of sedimentation in the northern Norwegian Sea. Deep-Sea Research 35,1223–1234.

    Article  Google Scholar 

  • Johannessen OM, L Bengtsson, MW. Miles, SI Kuzmina, VA Semenov, GV Alekseev, AP Nagurnyi, VF Zakharov, L Bobylev, LH Pettersson, K. Hasselmann, and HP Cattle 2002. Arctic climate change — observed and modeled temperature and sea ice variability. Nansen Environmental and Remote Sensing Center, Bergen. Technical Report No. 218.

    Google Scholar 

  • Johannessen OM 1986. Brief overview of the physical oceanography. Pp 103–128 in BG Hurdle (ed.) The Nordic Seas. Springer Verlag, New York.

    Chapter  Google Scholar 

  • Kohly A 1998. Diatom flux and species composition in the Greenland Sea and Norwegian Sea in 1991–1992. Marine Geology 145, 293–312.

    Article  Google Scholar 

  • Kosobokova KN 1999. The reproductive cycle and life history of the Arctic copepod Calanus glacialis in the White Sea. Polar Biology 22, 254–263.

    Article  Google Scholar 

  • Kosobokova KN and HJ Hirche 2000. Zooplankton distribution across the Lomonosov Ridge, Arctic Ocean: Species inventory, biomass and vertical structure. Deep-Sea Research 147, 2029–2060.

    Google Scholar 

  • Kosobokova KN, HJ Hirche, and T Scherzinger 2002. Feeding ecology of Spinocalanus antarcticus, a deep-water copeod with a looped gut. Marine Biology 141, 503–512.

    Article  Google Scholar 

  • Lara RJ, G Kattner, U Tillmann, and HJ Hirche 1994. The North East Water polynya (Greenland Sea). II. Mechanisms of nutrient supply and influence on phytoplankton distribution. Polar Biology 14, 483–490.

    Article  Google Scholar 

  • Legendre L, M Gosselin, HJ Hirche, G Kattner, and G Rosenberg 1993. Environmental control and potential fate of size-fractionated phytoplankton production in the Greenland Sea (75°N). Marine Ecolorv Progress Series 98. 207–313.

    Google Scholar 

  • Macdonald RW 1996. Awakenings in the Arctic. Nature 380.286–287.

    Article  Google Scholar 

  • Mumm N 1993. Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean. Polar Biology 13, 451–46.

    Article  Google Scholar 

  • Niebauer HJ 1982. Wind and melt driven circulation in a marginal sea ice edge frontal system: a numerical model. Continental Shelf Research1, 49–98.

    Article  Google Scholar 

  • Niebauer HJ and WO Smith 1989. A mesoscale model of the physical-biological interactions in the Fram Strait marginal ice zone. Journal of Geophysical Research 94,16151–16176.

    Article  Google Scholar 

  • Noji TT, Frey KY Børsheim, L. Miller, HJ Hirche, and J Urban-Rich 1996. Plankton dynamics and sedimentation in the Greenland Sea. Pp 540–554 in P Wadhams, JP Wilkinson, and SCS Wells (eds.) European Subpolar Ocean Programme: Sea Ice — Ocean Interactions Vol. 2. Scott Polar Research Institute_ Cambridge.

    Google Scholar 

  • Pésant S, L Legendre, M Gosselin, C Ashjian, B Booth, L Fortier, HJ Hirche, P Lane, J Michaud, REH Smith, SL Smith, and WO Smith Jr 1998. Pathways of carbon cycling in the euphotic zone: The fate of large-sized phytoplankton in the Northeast water polynya. Journal of Plankton Research 20, 1267–1291.

    Article  Google Scholar 

  • Ramseier RO, C Garrity, E Bauerfeind, and R Peinert 1999. Sea-ice impact on long-term particle flux in the Greenland Sea’s Is Odden-Nordbukta region, 1985–1996. Journal of Geophysical Research (C Oceans) 104, 5329–5343.

    Article  Google Scholar 

  • Richter C 1994. Regional and seasonal variability in the vertical distribution of mesozooplankton in the Greenland Sea. Report of Polar Research 154, 90pp.

    Google Scholar 

  • Richter C 1995. Seasonal changes in the vertical distribution of mesozooplankton in the Greenland Sea (75°N): distribution strategies of calanoid copepods. ICES Journal of Marine Science 52, 533–539.

    Article  Google Scholar 

  • Runge JA and RG Ingram 1988. Under-ice grazing by planktonic, calanoid copepods in relation to a bloom of ice microalgae in southeastern Hudson Bay. Limnology and Oceanography 33, 280–286.

    Article  Google Scholar 

  • Sakshaug E 1987. Arctic planktonic ecosystems. Pp 47–51 in LK Medlin and J Priddle (eds.) Polar marine diatoms. British Antarctic Survey, Cambridge.

    Google Scholar 

  • Sakshaug E and HR Skjoldal 1989. Life at the ice edge. Ambio 8, 60–67.

    Google Scholar 

  • Schmitz WJ 1995. On the interbasin-scale thermohaline circulation. Review of Geophysics 33,151–173.

    Article  Google Scholar 

  • Schneider W and G Budeus 1994. The North East Water polynya (Greenland Sea). I. A physical concept of its generation. Polar Biology 14, 1–9.

    Article  Google Scholar 

  • Slagstad D, K Downing, F Carlotti, and HJ Hirche 1999. Modelling the carbon export and airsea flux of CO2 in the Greenland Sea. Deep-Sea Research II 46, 1511–1530.

    Google Scholar 

  • Smith SL, WO Smith Jr, LA Codispoti, and DL Wilson 1985. Biological observations in the marginal ice zone of the East Greenland Sea. Journal of Marine Research 43,693–717.

    Article  Google Scholar 

  • Smith WO Jr, LA Codispoti, DM Nelson, T Manley, EJ Buskey, HJ Niebauer, and GF Cota 1991. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352, 514–516.

    Article  Google Scholar 

  • Smith WO Jr, MEM Baumann, DL Wilson, and L Aletsee 1987. Phytoplankton biomass and productivity in the marginal ice zone of the Fram Strait during summer 1984. Journal of Geophysical Research 92, 6777–6786.

    Article  Google Scholar 

  • Smith WO Jr 1987. Phytoplankton dynamics in marginal ice zones. Oceanography and Marine Biology Annual Review 25,11–38.

    Google Scholar 

  • Trees CC, J Aiken, HJ Hirche, and SB Groom 1992. Bio-optical variability across the Arctic Front. Polar Biology 12, 455–461.

    Article  Google Scholar 

  • Zhang J and X Zhang 2001. Heat and freshwater budgets and pathways in the arctic mediterranean in a coupled ocean/sea-ice model. Journal of Oceanography 57 (2), 207–234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Hirche, HJ. (2004). Zooplankton Habitats of the Greenland Sea. In: Skreslet, S. (eds) Jan Mayen Island in Scientific Focus. NATO Science Series, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2957-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2957-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2956-1

  • Online ISBN: 978-1-4020-2957-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics