The Pacific Sector Hadley and Walker Circulation in Historical Marine Wind Analyses

Potential for Reconstruction from Proxy Data
  • Michael N. Evans
  • Alexey Kaplan
Part of the Advances in Global Change Research book series (AGLO, volume 21)


We investigate the historical variation of the wintertime Pacific marine sector meridional atmospheric circulation, using simple diagnostics calculated from a statistical analysis of 140 years of surface wind data. Intensity of the wintertime expression of the Hadley circulation, as expressed by a wind divergence index, varies interannually and secularly. In agreement with previous studies, interannual variation is associated with variations in the Walker circulation; e.g., El Niño/Southern Oscillation (ENSO) activity. The secular variation, most likely affected by systematic measurement biases, is nevertheless consistent with results from simulation of the Indo-Pacific-sector Hadley circulation variability in the NCEP/NCAR reanalysis (see Chapter 3, “Change of the Tropical Hadley Cell since 1950,” Quan et al., this volume; and Chapter 5, “Interannual to Interdecadal Variations of the Hadley and Walker Circulations,” Minobe, this volume) and model simulations of the global atmospheric response to anthropogenic forcing (see Chapter 14, “The Response of the Hadley Circulation to Climate Changes, Past and Future,” Rind and Perlwitz, this volume; and Chapter 17, “Mechanisms of an Intensified Hadley Circulation in Response to Solar Forcing in the Twentieth Century,” Meehl et al., this volume). A proxy network tracking Hadley intensity as mirrored in sea surface temperature (SST), precipitation, surface winds, and/or ocean upwelling might be used to further study processes underlying long-term variability in the Hadley circulation over the past several hundred years.


Surface Wind Walker Circulation Hadley Circulation Proxy Data Interannual Time Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, R.J., N. Nicholls, P.D. Jones, and I. Butterworth. 1991. A further extension of the Tahiti-Darwin SOI, early SOI results and Darwin pressure. Journal of Climate 4: 743–749, data accessed via internet: Scholar
  2. Bjerknes, J. 1966. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18: 820–829.CrossRefGoogle Scholar
  3. Bjerknes, J. 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review 97: 163–172.CrossRefGoogle Scholar
  4. Bradley, R.S. 1999. Paleoclimatology: Reconstructing Climates of the Quaternary, 2nd edition. New York: Academic Press.Google Scholar
  5. Cane, M.A., A.C. Clement, A. Kaplan, Y. Kushnir, R. Murtugudde, D. Pozdnyakov, R. Seager, and S.E. Zebiak. 1997. 20th century sea surface temperature trends. Science 275: 957–960.CrossRefGoogle Scholar
  6. Cane, M.A., A. Kaplan, R.N. Miller, B. Tang, E.C. Hackert, and A.J. Busalacchi. 1996. Mapping tropical Pacific sea level: Data assimilation via a reduced state space Kaiman filter. Journal of Geophysical Research 101: 22599–22617.CrossRefGoogle Scholar
  7. Cardone, V.J., J.G. Greenwood, and M.A. Cane. 1990. On trends in historical marine wind data. Journal of Climate 3: 113–127.CrossRefGoogle Scholar
  8. Cole, J.E., R.G. Fairbanks, and G.T. Shen. 1993. Recent variability in the Southern Oscillation: Isotopic results from a Tarawa Atoll coral. Science 260: 1790–1793.CrossRefGoogle Scholar
  9. Diaz, H.F., C. Folland, T. Manabe, D. Parker, R. Reynolds, and S. Woodruff. 2002. Workshop on Advances in the Use of Historical Marine Climate Data. WMO Bulletin 51: 377–380.Google Scholar
  10. Dima, I., and J.M. Wallace. 2003. On the seasonality of the Hadley Cell. Journal of Climate 60: 1522–1527.Google Scholar
  11. Evans, M.N., M.A. Cane, D.P. Schrag, A. Kaplan, B.K. Linsley, R. Villalba, and G.M. Wellington. 2001a. Support for tropically-driven Pacific decadal variability based on paleoproxy evidence. Geophysical Research Letters 28: 3689–3692.CrossRefGoogle Scholar
  12. Evans, M.N., A. Kaplan, and M.A. Cane. 2002. Pacific sea surface temperature field reconstruction from coral δ18O data using reduced space objective analysis. Paleoceanography 17: 10.1029/2000PA000590.CrossRefGoogle Scholar
  13. Evans, M.N., A. Kaplan, B.K. Reichert, and M.A. Cane. 2001b. Reconstruction/deconstruction: Toward better paleoclimate estimates. In, EOS, Transactions, GU. Vol. 82(47) Suppl. Abstract GC21A-08, accessed via online abstract database (, July 2003.Google Scholar
  14. Garreaud, R.D., and D.S. Battisti. 1999. Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. Journal of Climate 12:2113–2122.CrossRefGoogle Scholar
  15. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebusuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph. 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society 77: 437–471.CrossRefGoogle Scholar
  16. Kaplan, A., M.A. Cane, and Y. Kushnir. 2003. Reduced space approach to the optimal analysis interpolation of historical marine observations: Accomplishments, difficulties, and prospects. In, Advances in the Applications of Marine Climatology: The Dynamic Part of the WMO Guide to the Applications of Marine Climatology. Geneva, Switzerland: World Meteorological Organization WMO/TD-1081, pp. 199–216, available at:\20TR13\20Marine\20Climatology/JCOMM_TR13.pdf.Google Scholar
  17. Kaplan, A., M.A. Cane, Y. Kushnir, A.C. Clement, M.B. Blumenthal, and B. Rajagopalan. 1998. Analyses of global sea surface temperature 1856–1991. Journal of Geophysical Research 103(C9): 18567–18589.CrossRefGoogle Scholar
  18. Kaplan, A., M.A. Cane, Y. Kushnir, and D.L. Witter. 2004. Interannual variability of the tropical Pacific surface winds. International Journal of Climate (in preparation).Google Scholar
  19. Kaplan, A., M.N. Evans, B.K. Reichert, and M.A. Cane. 2001. Constraints from the instrumental and paleo data on 19th century climate. In, EOS, Transactions, AGU. Vol. 82(47) Suppl. Abstract GC21A-07, accessed via online abstract database (, July 2003.Google Scholar
  20. Kaplan, A., Y. Kushnir, and M.A. Cane. 2000. Analysis of historical sea level pressure 1854–1992. Journal of Climate 13: 2987–3002.CrossRefGoogle Scholar
  21. Kaplan, A., Y. Kushnir, M.A. Cane, and M.B. Blumenthal. 1997. Reduced space optimal analysis for historical datasets: 136 years of Atlantic sea surface temperatures. Journal of Geophysical Research 102: 27835–27860.CrossRefGoogle Scholar
  22. Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebusuzaki, M. Kanamitsu, V. Kousky, H. Vanden Dool, R. Jenne, and M. Fiorino. 2001. The NCEP/NCAR 50-year Reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society 82: 247–267.CrossRefGoogle Scholar
  23. Meehl, G.A., G.J. Boer, C. Covey, M. Latif, and R.J. Stouffer. 2000. The Coupled Model Intercomparison Project (CMIP). Bulletin of the American Meteorological Society 81:313–318.CrossRefGoogle Scholar
  24. Oort, A.H., and E.M. Rasmusson. 1970. On the annual variation of the monthly mean meridional circulation. Monthly Weather Review 98: 423–442.CrossRefGoogle Scholar
  25. Oort, A.H., and J.J. Yienger. 1996. Observed interannual variability in the Hadley Circulation and its connection to ENSO. Journal of Climate 9: 2751–2767.CrossRefGoogle Scholar
  26. Peixoto, J.P., and A.H. Oort. 1992. Physics of Climate. American Institute of Physics, New York.Google Scholar
  27. Trenberth, K.E. 1984. Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Monthly Weather Review 112: 2359–2379.CrossRefGoogle Scholar
  28. Trenberth, K.E., and J.M. Caron. 2000. The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. Journal of Climate 13: 4358–4365.CrossRefGoogle Scholar
  29. Trenberth, K.E., and D.J. Shea. 1987. On the evolution of the Southern Oscillation. Monthly Weather Review 115: 3078–3096.CrossRefGoogle Scholar
  30. Waliser, D.E., Z. Shi, J.R. Lanzante, and A.H. Oort. 1999. The Hadley Circulation: Assessing NCEP/NCAR Reanalysis and sparse in-situ estimates. Climate Dynamics 15: 719–735.CrossRefGoogle Scholar
  31. Ward, M.N., and B.J. Hoskins. 1996. Near-surface wind over the Global Ocean 1949–1988. Journal of Climate 9: 1877–1895.CrossRefGoogle Scholar
  32. Woodruff, S.D., H.F. Diaz, J.D. Elms, and S.J. Worley. 1998. COADS Release 2 data and metadata enhancements for improvements of marine surface flux fields. Physical. Chemistry of the Earth 23: 517–526, accessed via Internet, May 1, 2003: CrossRefGoogle Scholar
  33. Woodruff, S.D., R.J. Slutz, R.L. Jenne, and P.M. Steurer. 1987. A comprehensive ocean-atmosphere data set. Bulletin of the American Meteorological Society 68: 521–527.CrossRefGoogle Scholar
  34. Wu, R.G., and S.-P. Xie. 2003. On equatorial Pacific surface wind changes around 1977: NCEP-NCAR reanalysis versus COADS observations. Journal of Climate 16: 167–173.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Michael N. Evans
    • 1
  • Alexey Kaplan
    • 2
  1. 1.Laboratory of Tree-Ring ResearchUniversity of ArizonaTucsonUSA
  2. 2.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA

Personalised recommendations