Skip to main content

The Response of the Hadley Circulation to Climate Changes, Past and Future

  • Chapter

Part of the book series: Advances in Global Change Research ((AGLO,volume 21))

Abstract

A suite of altered climate experiments for the Paleocene, the last glacial maximum (LGM), and a 2 × CO2 climate were compared to assess the factors responsible for producing variations in Hadley cell intensity and extent. The climate simulations used best-guess topography and marine surface fields, as well as feasible alternative sea surface temperature (SST) patterns. The individual contributions to the circulations were quantified, and compared among the different simulations. The results show that the Hadley cell intensity is associated with the gradient in latent heat release from the tropics to the subtropics, driven in the model by the gradient in sea surface temperature. It is not related to the absolute warmth of the climate, or of the tropical sea surface temperatures. Eddy forcing, primarily through transient eddy heat transport, amplified the subtropical portion of the cell, as well as the mid-latitude Ferrel cell. The poleward extent of the Hadley cell is affected by numerous processes, including the influence of topography in the extratropics. It also does not vary systematically with global mean temperature. Only the strongest Hadley cell changes are longitudinally homogeneous; there is little relationship between the change in Hadley cell intensity and the change in strength of the Walker cell, and the Pacific Ocean is the most important basin for the zonal average Hadley cell response. Although the latitudinal average precipitation does respond interactively with Hadley cell intensity and extent, the soil moisture variations are less correlated, due to differing seasonal effects and the influence of temperature/evaporation changes. The importance of the Hadley cell variations for assessing past and future water availability changes should not be overestimated, although it is a contributing factor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker, E., and G. Schmitz. 2001. Interaction between extratropical stationary waves and the zonal mean circulation. Journal of the Atmospheric Sciences 58: 462–480.

    Article  Google Scholar 

  • Betts, A.K., and W. Ridgway. 1988. Coupling of the radiative, convective and surface fluxes over the equatorial Pacific. Journal of the Atmospheric Sciences 45: 522–536.

    Article  Google Scholar 

  • Chylek, P., L. Lseins, and U. Lohmann. 2001. Enhancement of dust source area during past glacial periods due to changes of the Hadley circulation. Journal of Geophysical Research 106: 18477–18485.

    Article  Google Scholar 

  • CLIMAP Project Members. 1981. Seasonal reconstructions of the Earth’s surface at the last glacial maximum. Geological Society of America, Map and Chart Series, MC-36.

    Google Scholar 

  • Cook, K.H. 2003. Role of continents in driving the Hadley Cells. Journal of the Atmospheric Sciences 60: 957–976.

    Article  Google Scholar 

  • Dima, I.M., and J.M. Wallace. 2003. On the seasonality of the Hadley Cell. Journal of the Atmospheric Sciences 60: 1522–1527.

    Article  Google Scholar 

  • Douville, H., F. Chauvin, S. Planton, J.-F. Royer, D. Salas-Melia, and S. Tyteca. 2002. Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Climate Dynamics 20: 45–68.

    Article  Google Scholar 

  • Fang, M., and K.K. Tung. 1997. The dependence of the Hadley circulation on the thermal relaxation time. Journal of the Atmospheric Sciences 54: 1379–1384.

    Article  Google Scholar 

  • Fang, M., and K.K. Tung. 1999. Time-dependent non-linear Hadley circulation. Journal of Atmospheric Sciences 56: 1797–1807.

    Article  Google Scholar 

  • Farrell, B.F. 1990. Equable climate dynamics. Journal of the Atmospheric Sciences 47: 2986–2995.

    Article  Google Scholar 

  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy and L. Travis. 1983. Efficient three dimensional global models for climate studies: Models I and II. Monthly Weather Review 111: 609–662.

    Article  Google Scholar 

  • Held, I.M., and A.Y. Hou. 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. Journal of the Atmospheric Sciences 37: 515–533.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 2001. Climate Change 2001. The Scientific Basis. Summary for Policymakers and Technical Summary of the Working Group I Report. Cambridge: Cambridge University Press, 98 pp.

    Google Scholar 

  • Kim, H.K., and S. Lee. 2001. Hadley cell dynamics in a primitive equation model. Part II: Nonaxisymmetric flow. Journal of the Atmospheric Sciences 58: 2859–2871.

    Article  Google Scholar 

  • Lindzen, R.S., and A.Y. Hou. 1988. Hadley circulations for zonally-averaged heating centered off the equator. Journal of the Atmospheric Sciences 45: 2416–2427.

    Article  Google Scholar 

  • Magnusdottir, G. 2001. The modeled response of the mean winter circulation to zonally averaged SST trends. Journal of Climate 14: 4166–4190.

    Article  Google Scholar 

  • Nakamura, M. 1978. Dynamic effects of mountains on the general circulation of the atmosphere. IV. Effects on the general circulation of the baroclinic atmosphere. Journal of the Meteorological Society of Japan 56: 353–366.

    Google Scholar 

  • O’Connell, S., M.A. Chandler, and R. Ruedy. 1996. Implications for the creation of warm saline deep water: Late Paleocene reconstructions and global climate model simulations. GSA Bulletin 108: 270–284.

    Article  Google Scholar 

  • Oort, A.H., and J.J. Yienger. 1996. Observed interannual variability in the Hadley circulation and its connection to ENSO. Journal of Climate 9: 2751–2767.

    Article  Google Scholar 

  • Pfeffer, R.L. 1981. Wave-mean flow interactions in the atmosphere. Journal of the Atmospheric Sciences 38: 1340–1359.

    Article  Google Scholar 

  • Pierrehumbert, R.T. 1995. Thermostats, radiator fins, and the local runaway greenhouse. Journal of Atmospheric Science 52: 1784–1806.

    Article  Google Scholar 

  • Polvani, L.M., and A.H. Sobel. 2002. The Hadley circulation and the weak temperature gradient approximation. Journal of the Atmospheric Sciences 59: 1744–1752.

    Article  Google Scholar 

  • Ramstein, G., Y. Serafini-Le Treut, J. Le Treut, M. Fonction, and S. Joussaume. 1998. Cloud processes associated with past and future climate changes. Climate Dynamics 14: 233–247.

    Article  Google Scholar 

  • Rind, D. 1987. The doubled CO2 climate: Impact of the sea surface temperature gradient. Journal of the Atmospheric Sciences 44: 3235–3268.

    Article  Google Scholar 

  • Rind, D. 1988. Dependence of warm and cold climate depiction on climate model resolution. Journal of Climate 10: 965–997.

    Article  Google Scholar 

  • Rind, D. 1998. Latitudinal temperature gradient and climate change. Journal of Geophysical Research 103: 5943–5971.

    Article  Google Scholar 

  • Rind, D. 2000. Relating paleoclimate data and past temperature gradients: Some suggestive rules. Quaternary Science Reviews 19: 382–390.

    Article  Google Scholar 

  • Rind, D., and D. Peteet. 1985. LGM terrestrial evidence and CLIMAP SSTs: Are they consistent? Quaternary Research 24: 1–22.

    Article  Google Scholar 

  • Rind, D., and W. Rossow. 1984. The effects of physical processes on the Hadley circulation. Journal of the Atmospheric Sciences 41: 479–507.

    Article  Google Scholar 

  • Rind, D., J. Lerner, and C. McLinden. 2001a. Changes of tracer distributions in the doubled CO2 climate. Journal of Geophysical Research 106: 28061–28079.

    Article  Google Scholar 

  • Rind, D., P. Lonergan, N.K. Balachandran, and D. Shindell. 2002b. 2×CO2 and solar variability influences on the troposphere through wave-mean flow interactions. Journal of the Meteorological Society of Japan 80: 863–876.

    Article  Google Scholar 

  • Rind, D., P. Lonergan, J. Lerner, and M. Chandler. 2001b. Climate change in the middle atmosphere. Part V: The paleostratosphere in warm and cold climates. Journal of Geophysical Research 106: 20195–20212.

    Article  Google Scholar 

  • Rind, D., J. Perlwitz, J. Lerner, C. McLinden, and M. Prather. 2002a. The sensitivity of tracer transports and stratospheric ozone to sea surface temperature patterns in the doubled CO2 climate. Journal of Geophysical Research 107, doi 10.1029/2002 JD002483.

    Google Scholar 

  • Rind, D., R. Suozzo, N.K. Balachandran, and M. Prather. 1990. Climate change and the middle atmosphere. Part 1. The doubled CO2 climate. Journal of the Atmospheric Sciences 47: 475–494.

    Article  Google Scholar 

  • Rind, D., R. Suozzo, N.K. Balachandran, A. Lacis, and G.L. Russell. 1988. The GISS Global Climate/Middle Atmosphere Model Part I: Model structure and climatology. Journal of the Atmospheric Sciences 45: 329–370.

    Article  Google Scholar 

  • Schneider, E.K. 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part II: Nonlinear calculations. Journal of the Atmospheric Sciences 34: 280–296.

    Article  Google Scholar 

  • Schneider, E.K., and R.S. Lindzen. 1977. Axially symmetric steady-state models of the basic state for instability and climate studies. Part I: Linearized calculations. Journal of the Atmospheric Sciences 34: 263–279.

    Article  Google Scholar 

  • Sobel, A.H., and C.S. Bremerton. 2000. Modeling tropical precipitation in a single column. Journal of Climate 13: 4378–4392.

    Article  Google Scholar 

  • Taylor, K.E. 1980. The roles of mean meridional motions and large-scale eddies in zonally averaged circulations. Journal of the Atmospheric Sciences 37: 1–19.

    Article  Google Scholar 

  • Thompson, S.L., and D. Pollard. 1995. A global climate model (GENESIS) with a land-surface transfer scheme (LSX). Part II: CO2 sensitivity. Journal of Climate 8: 1104–1121.

    Article  Google Scholar 

  • Trenberth, K.E., and D.P. Stepaniak. 2003. Seamless poleward atmospheric energy transports and implications for the Hadley circulation. Journal of Climate 16: 3705–3721.

    Google Scholar 

  • Trenberth, K.E., D.P. Stepaniak, and J.M. Caron. 2000. The global monsoon as seen through the divergent atmospheric circulation. Journal of Climate 13: 3969–3993.

    Article  Google Scholar 

  • Waliser, D.E., Z. Shi, J.R. Lanzante, and A.H. Oort. 1999. The Hadley circulation: Assessing NCEP/NCAR reanalysis and sparse in-situ estimates. Climate Dynamics 15: 719–735.

    Article  Google Scholar 

  • Watterson, I.G., M.R. Dix, H.B. Gordon, and J.L. McGregor. 1995. The CSIRO nine-level atmospheric general circulation model and its equilibrium present and doubled CO2 climates. Australian Meteorological Magazine 44: 111–125.

    Google Scholar 

  • Webb, R.S., S.J. Lehman, D. Rind, R. Healy, and D. Sigman. 1997. Influence of ocean heat transport on the climate of the Last Glacial Maximum. Nature 385: 695–699.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rind, D., Perlwitz, J. (2004). The Response of the Hadley Circulation to Climate Changes, Past and Future. In: Diaz, H.F., Bradley, R.S. (eds) The Hadley Circulation: Present, Past and Future. Advances in Global Change Research, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2944-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2944-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6752-4

  • Online ISBN: 978-1-4020-2944-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics