Advertisement

P53, Cell Cycle Arrest and Apoptosis

Chapter

The p53 gene, first described in 1979, was the first tumor suppressor gene to be identified (Lane and Crawford, 1979; Linzer and Levine, 1979). It was originally identified as an oncogene- a cell cycle accelerator, but subsequent studies ten years after its discovery confirmed it to be a tumor suppressor gene that is highly mutated in a wide variety of tumors (Baker et al., 1990; Finlay et al., 1989). In about half of the tumors, p53 is inactivated directly as a result of mutations in the p53 gene. In many others, it is inactivated indirectly through binding to viral proteins, or as a result of alterations in the genes whose products interact with p53 or transmit information to or from p53. The tumor suppressor protein p53 acts as a major node in a complex signaling pathway that evolved to sense a broad range of cellular stresses such as DNA damage, oncogene activation, nucleotide depletion, and hypoxia (Figure 1). In the absence of cellular stress, the p53 protein is expressed at low steady-state levels and exerts little, if any, effect on cell fate.

Keywords

Cell Cycle Arrest Death Receptor Cell Death Differ Trail Sensitivity Autoregulatory Feedback Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K., and Vogelstein, B. (1990). Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912-915.PubMedGoogle Scholar
  2. Bassik, M. C., Scorrano, L., Oakes, S. A., Pozzan, T., and Korsmeyer, S. J. (2004). Phosphorylation of BCL-2 regulates ER Ca(2+) homeostasis and apoptosis. Embo J 23, 1207-1216.PubMedGoogle Scholar
  3. Bennett, M., Macdonald, K., Chan, S. W., Luzio, J. P., Simari, R., and Weissberg, P. (1998). Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290-293.PubMedGoogle Scholar
  4. Bergamaschi, D., Samuels, Y., O'Neil, N. J., Trigiante, G., Crook, T., Hsieh, J. K., O'Connor, D. J., Zhong, S., Campargue, I., Tomlinson, M. L., et al. (2003). iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet 33, 162-167.PubMedGoogle Scholar
  5. Bischof, O., Kirsh, O., Pearson, M., Itahana, K., Pelicci, P. G., and Dejean, A. (2002). Deconstructing PML-induced premature senescence. Embo J 21, 3358-3369.PubMedGoogle Scholar
  6. Blagosklonny, M. V., and El-Deiry, W. S. (1996). In vitro evaluation of a p53-expressing adenovirus as an anti-cancer drug. Int J Cancer 67, 386-392.PubMedGoogle Scholar
  7. Blagosklonny, M. V., and El-Deiry, W. S. (1998). Acute overexpression of wt p53 facilitates anticancer drug-induced death of cancer and normal cells. Int J Cancer 75, 933-940.PubMedGoogle Scholar
  8. Boehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T., and Snyder, S. H. (2003). Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5, 1051-1061.PubMedGoogle Scholar
  9. Boulaire, J., Fotedar, A., and Fotedar, R. (2000). The functions of the cdk-cyclin kinase inhibitor p21WAF1. Pathol Biol (Paris) 48, 190-202.Google Scholar
  10. Bourdon, J. C., Laurenzi, V. D., Melino, G., and Lane, D. (2003). p53: 25 years of research and more questions to answer. Cell Death Differ 10, 397-399.PubMedGoogle Scholar
  11. Bourdon, J. C., Renzing, J., Robertson, P. L., Fernandes, K. N., and Lane, D. P. (2002). Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane. J Cell Biol 158, 235-246.PubMedGoogle Scholar
  12. Brooks, C. L., and Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15, 164-171.PubMedGoogle Scholar
  13. Burns, T. F., Bernhard, E. J., and El-Deiry, W. S. (2001). Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene 20, 4601-4612.PubMedGoogle Scholar
  14. Burns, T. F., and El-Deiry, W. S. (2001). Identification of inhibitors of TRAIL-induced death (ITIDs) in the TRAIL-sensitive colon carcinoma cell line SW480 using a genetic approach. J Biol Chem 276, 37879-37886.PubMedGoogle Scholar
  15. Canman, C. E., and Lim, D. S. (1998). The role of ATM in DNA damage responses and cancer. Oncogene 17, 3301-3308.PubMedGoogle Scholar
  16. Canman, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B., and Siliciano, J. D. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677-1679.PubMedGoogle Scholar
  17. Caspari, T. (2000). How to activate p53. Curr Biol 10, R315-317.PubMedGoogle Scholar
  18. Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M., and Green, D. R. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014.PubMedGoogle Scholar
  19. Chipuk, J. E., Maurer, U., Green, D. R., and Schuler, M. (2003). Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4, 371-381.PubMedGoogle Scholar
  20. Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., and Wyllie, A. H. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849-852.PubMedGoogle Scholar
  21. Crook, T., Marston, N. J., Sara, E. A., and Vousden, K. H. (1994). Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79, 817-827.PubMedGoogle Scholar
  22. de Stanchina, E., Querido, E., Narita, M., Davuluri, R. V., Pandolfi, P. P., Ferbeyre, G., and Lowe, S. W. (2004). PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13, 523-535.PubMedGoogle Scholar
  23. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P. (1995). Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675-684.PubMedGoogle Scholar
  24. Di Leonardo, A., Linke, S. P., Clarkin, K., and Wahl, G. M. (1994). DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8, 2540-2551.PubMedGoogle Scholar
  25. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215-221.PubMedGoogle Scholar
  26. Dornan, D., Wertz, I., Shimizu, H., Arnott, D., Frantz, G. D., Dowd, P., K, O. R., Koeppen, H., and Dixit, V. M. (2004). The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86-92.PubMedGoogle Scholar
  27. Dulic, V., Kaufmann, W. K., Wilson, S. J., Tlsty, T. D., Lees, E., Harper, J. W., Elledge, S. J., and Reed, S. I. (1994). p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013-1023.PubMedGoogle Scholar
  28. Dumont, P., Leu, J. I., Della Pietra, A. C., 3rd, George, D. L., and Murphy, M. (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33, 357-365.PubMedGoogle Scholar
  29. El-Deiry, W. S. (1998). Regulation of p53 downstream genes. Semin Cancer Biol 8, 345-357.PubMedGoogle Scholar
  30. El-Deiry, W. S. (2001). Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ 8, 1066-1075.PubMedGoogle Scholar
  31. El-Deiry, W. S. (2003). The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22, 7486-7495.PubMedGoogle Scholar
  32. El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825.PubMedGoogle Scholar
  33. Espinosa, J. M., and Emerson, B. M. (2001). Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8, 57-69.PubMedGoogle Scholar
  34. Fei, P., Bernhard, E. J., and El-Deiry, W. S. (2002). Tissue-specific induction of p53 targets in vivo. Cancer Res 62, 7316-7327.PubMedGoogle Scholar
  35. Finlay, C. A., Hinds, P. W., and Levine, A. J. (1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell 57, 1083-1093.PubMedGoogle Scholar
  36. Flores, E. R., Tsai, K. Y., Crowley, D., Sengupta, S., Yang, A., McKeon, F., and Jacks, T. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560-564.PubMedGoogle Scholar
  37. Friedlander, P., Haupt, Y., Prives, C., and Oren, M. (1996). A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol Cell Biol 16, 4961-4971.PubMedGoogle Scholar
  38. Fu, L., Minden, M. D., and Benchimol, S. (1996). Translational regulation of human p53 gene expression. Embo J 15, 4392-4401.PubMedGoogle Scholar
  39. Gottlieb, T. M., Leal, J. F., Seger, R., Taya, Y., and Oren, M. (2002). Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21, 1299-1303.PubMedGoogle Scholar
  40. Grossman, S. R., Deato, M. E., Brignone, C., Chan, H. M., Kung, A. L., Tagami, H., Nakatani, Y., and Livingston, D. M. (2003). Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342-344.PubMedGoogle Scholar
  41. Guadagno, T. M., and Newport, J. W. (1996). Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity. Cell 84, 73-82.PubMedGoogle Scholar
  42. Guillouf, C., Rosselli, F., Krishnaraju, K., Moustacchi, E., Hoffman, B., and Liebermann, D.A. (1995). p53 involvement in control of G2 exit of the cell cycle: role in DNA damageinduced apoptosis. Oncogene 10, 2263-2270.PubMedGoogle Scholar
  43. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J. (1993). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816.PubMedGoogle Scholar
  44. Hartwell, L. H., and Weinert, T. A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629-634.PubMedGoogle Scholar
  45. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. H., and Oren, M. (1995). Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes Dev 9, 2170-2183.PubMedGoogle Scholar
  46. Hermeking, H., Lengauer, C., Polyak, K., He, T. C., Zhang, L., Thiagalingam, S., Kinzler, K.W., and Vogelstein, B. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1, 3-11.PubMedGoogle Scholar
  47. Herzinger, T., Funk, J. O., Hillmer, K., Eick, D., Wolf, D. A., and Kind, P. (1995). Ultraviolet B irradiation-induced G2 cell cycle arrest in human keratinocytes by inhibitory phosphorylation of the cdc2 cell cycle kinase. Oncogene 11, 2151-2156.PubMedGoogle Scholar
  48. Hitomi, M., Shu, J., Agarwal, M., Agarwal, A., and Stacey, D. W. (1998). p21Waf1 inhibits the activity of cyclin dependent kinase 2 by preventing its activating phosphorylation. Oncogene 17, 959-969.PubMedGoogle Scholar
  49. Ho, J., and Benchimol, S. (2003). Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10, 404-408.PubMedGoogle Scholar
  50. Hoffman, W. H., Biade, S., Zilfou, J. T., Chen, J., and Murphy, M. (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277, 3247-3257.PubMedGoogle Scholar
  51. Jeffers, J. R., Parganas, E., Lee, Y., Yang, C., Wang, J., Brennan, J., MacLean, K. H., Han, J., Chittenden, T., Ihle, J. N., et al. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4, 321-328.PubMedGoogle Scholar
  52. Kannan, K., Kaminski, N., Rechavi, G., Jakob-Hirsch, J., Amariglio, N., and Givol, D. (2001). DNA microarray analysis of genes involved in p53 mediated apoptosis: activation of Apaf1. Oncogene 20, 3449-3455.PubMedGoogle Scholar
  53. Kastan, M. B., Zhan, Q., el-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., and Fornace, A. J., Jr. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587-597.PubMedGoogle Scholar
  54. Kubbutat, M. H., Jones, S. N., and Vousden, K. H. (1997). Regulation of p53 stability by Mdm2. Nature 387, 299-303.PubMedGoogle Scholar
  55. Kuerbitz, S. J., Plunkett, B. S., Walsh, W. V., and Kastan, M. B. (1992). Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A 89, 7491-7495.PubMedGoogle Scholar
  56. Kurki, S., Latonen, L., and Laiho, M. (2003). Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J Cell Sci 116, 3917-3925.PubMedGoogle Scholar
  57. Lane, D. P., and Crawford, L. V. (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261-263.PubMedGoogle Scholar
  58. LeBlanc, H., Lawrence, D., Varfolomeev, E., Totpal, K., Morlan, J., Schow, P., Fong, S., Schwall, R., Sinicropi, D., and Ashkenazi, A. (2002). Tumor-cell resistance to death receptor--induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8, 274-281.PubMedGoogle Scholar
  59. Leng, R. P., Lin, Y., Ma, W., Wu, H., Lemmers, B., Chung, S., Parant, J. M., Lozano, G., Hakem, R., and Benchimol, S. (2003). Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112, 779-791.PubMedGoogle Scholar
  60. Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E., and George, D. L. (2004). Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol.Google Scholar
  61. Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501.PubMedGoogle Scholar
  62. Li, M., Brooks, C. L., Wu-Baer, F., Chen, D., Baer, R., and Gu, W. (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302, 1972-1975.PubMedGoogle Scholar
  63. Linzer, D. I., and Levine, A. J. (1979). Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43-52.PubMedGoogle Scholar
  64. Lohrum, M., and Scheidtmann, K. H. (1996). Differential effects of phosphorylation of rat p53 on transactivation of promoters derived from different p53 responsive genes. Oncogene 13, 2527-2539.PubMedGoogle Scholar
  65. Lopez-Girona, A., Furnari, B., Mondesert, O., and Russell, P. (1999). Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172-175.PubMedGoogle Scholar
  66. Louria-Hayon, I., Grossman, T., Sionov, R. V., Alsheich, O., Pandolfi, P. P., and Haupt, Y. (2003). The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 278, 33134-33141.PubMedGoogle Scholar
  67. Lowe, S. W., Bodis, S., McClatchey, A., Remington, L., Ruley, H. E., Fisher, D. E., Housman, D. E., and Jacks, T. (1994). p53 status and the efficacy of cancer therapy in vivo. Science 266, 807-810.PubMedGoogle Scholar
  68. Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, D. E. (1993a). p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957-967.PubMedGoogle Scholar
  69. Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., and Jacks, T. (1993b). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847-849.PubMedGoogle Scholar
  70. Lu, X., and Lane, D. P. (1993). Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75, 765-778.PubMedGoogle Scholar
  71. Ludwig, R. L., Bates, S., and Vousden, K. H. (1996). Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol 16, 4952-4960.PubMedGoogle Scholar
  72. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490.PubMedGoogle Scholar
  73. MacLachlan, T. K., and El-Deiry, W. S. (2002). Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci U S A 99, 9492-9497.PubMedGoogle Scholar
  74. MacLachlan, T. K., Takimoto, R., and El-Deiry, W. S. (2002). BRCA1 directs a selective p53-dependent transcriptional response towards growth arrest and DNA repair targets. Mol Cell Biol 22, 4280-4292.PubMedGoogle Scholar
  75. Matsuoka, S., Huang, M., and Elledge, S. J. (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893-1897.PubMedGoogle Scholar
  76. McCurrach, M. E., Connor, T. M., Knudson, C. M., Korsmeyer, S. J., and Lowe, S. W. (1997). bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci U S A 94, 2345-2349.PubMedGoogle Scholar
  77. Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U. M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11, 577-590.PubMedGoogle Scholar
  78. Miyashita, T., Harigai, M., Hanada, M., and Reed, J. C. (1994a). Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 54, 3131-3135.PubMedGoogle Scholar
  79. Miyashita, T., Krajewski, S., Krajewska, M., Wang, H. G., Lin, H. K., Liebermann, D. A., Hoffman, B., and Reed, J. C. (1994b). Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799-1805.PubMedGoogle Scholar
  80. Moroni, M. C., Hickman, E. S., Denchi, E. L., Caprara, G., Colli, E., Cecconi, F., Muller, H., and Helin, K. (2001). Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 3, 552-558.PubMedGoogle Scholar
  81. Nakano, K., and Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683-694.PubMedGoogle Scholar
  82. Nurse, P. (1990). Universal control mechanism regulating onset of M-phase. Nature 344, 503-508.PubMedGoogle Scholar
  83. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T., and Tanaka, N. (2000a). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058.PubMedGoogle Scholar
  84. Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., and Taya, Y. (2000b). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849-862.PubMedGoogle Scholar
  85. Oren, M. (2003). Decision making by p53: life, death and cancer. Cell Death Differ 10, 431-442.PubMedGoogle Scholar
  86. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., and Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature 389, 300-305.PubMedGoogle Scholar
  87. Raman, V., Martensen, S. A., Reisman, D., Evron, E., Odenwald, W. F., Jaffee, E., Marks, J., and Sukumar, S. (2000). Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405, 974-978.PubMedGoogle Scholar
  88. Rikhof, B., Corn, P. G., and El-Deiry, W. S. (2003). Caspase 10 levels are increased following DNA damage in a p53-dependent manner. Cancer Biol Ther 2, 707-712.PubMedGoogle Scholar
  89. Rowan, S., Ludwig, R. L., Haupt, Y., Bates, S., Lu, X., Oren, M., and Vousden, K. H. (1996). Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. Embo J 15, 827-838.PubMedGoogle Scholar
  90. Sabbatini, P., and McCormick, F. (1999). Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis. J Biol Chem 274, 24263-24269.PubMedGoogle Scholar
  91. Samuels-Lev, Y., O'Connor, D. J., Bergamaschi, D., Trigiante, G., Hsieh, J. K., Zhong, S., Campargue, I., Naumovski, L., Crook, T., and Lu, X. (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8, 781-794.PubMedGoogle Scholar
  92. Sax, J. K., and El-Deiry, W. S. (2003). p53 downstream targets and chemosensitivity. Cell Death Differ 10, 413-417.PubMedGoogle Scholar
  93. Sax, J. K., Fei, P., Murphy, M. E., Bernhard, E., Korsmeyer, S. J., and El-Deiry, W. S. (2002). BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4, 842-849.PubMedGoogle Scholar
  94. Schneider, E., Montenarh, M., and Wagner, P. (1998). Regulation of CAK kinase activity by p53. Oncogene 17, 2733-2741.PubMedGoogle Scholar
  95. Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T., and Korsmeyer, S. J. (2003). BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135-139.PubMedGoogle Scholar
  96. Senoo, M., Manis, J. P., Alt, F. W., and McKeon, F. (2004). p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell 6, 85-89.PubMedGoogle Scholar
  97. Shikama, N., Lee, C. W., France, S., Delavaine, L., Lyon, J., Krstic-Demonacos, M., and La Thangue, N. B. (1999). A novel cofactor for p300 that regulates the p53 response. Mol Cell 4, 365-376.PubMedGoogle Scholar
  98. Singh, B., Reddy, P. G., Goberdhan, A., Walsh, C., Dao, S., Ngai, I., Chou, T. C., P, O. C., Levine, A. J., Rao, P. H., and Stoffel, A. (2002). p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev 16, 984-993.PubMedGoogle Scholar
  99. Slebos, R. J., Lee, M. H., Plunkett, B. S., Kessis, T. D., Williams, B. O., Jacks, T., Hedrick, L., Kastan, M. B., and Cho, K. R. (1994). p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc Natl Acad Sci U S A 91, 5320-5324.PubMedGoogle Scholar
  100. Stambolic, V., MacPherson, D., Sas, D., Lin, Y., Snow, B., Jang, Y., Benchimol, S., and Mak, T. W. (2001). Regulation of PTEN transcription by p53. Mol Cell 8, 317-325.PubMedGoogle Scholar
  101. Stewart, Z. A., and Pietenpol, J. A. (2001). p53 Signaling and cell cycle checkpoints. Chem Res Toxicol 14, 243-263.PubMedGoogle Scholar
  102. Sugars, K. L., Budhram-Mahadeo, V., Packham, G., and Latchman, D. S. (2001). A minimal Bcl-x promoter is activated by Brn-3a and repressed by p53. Nucleic Acids Res 29, 4530-4540.PubMedGoogle Scholar
  103. Sui, G., Affar el, B., Shi, Y., Brignone, C., Wall, N. R., Yin, P., Donohoe, M., Luke, M. P., Calvo, D., and Grossman, S. R. (2004). Yin Yang 1 is a negative regulator of p53. Cell 117, 859-872.PubMedGoogle Scholar
  104. Symonds, H., Krall, L., Remington, L., Saenz-Robles, M., Lowe, S., Jacks, T., and Van Dyke, T. (1994). p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78, 703-711.PubMedGoogle Scholar
  105. Takimoto, R., and El-Deiry, W. S. (2000). Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19, 1735-1743.PubMedGoogle Scholar
  106. Tanikawa, C., Matsuda, K., Fukuda, S., Nakamura, Y., and Arakawa, H. (2003). p53RDL1 regulates p53-dependent apoptosis. Nat Cell Biol 5, 216-223.PubMedGoogle Scholar
  107. Taylor, W. R., and Stark, G. R. (2001). Regulation of the G2/M transition by p53. Oncogene 20, 1803-1815.PubMedGoogle Scholar
  108. Velculescu, V. E., and El-Deiry, W. S. (1996). Biological and clinical importance of the p53 tumor suppressor gene. Clin Chem 42, 858-868.PubMedGoogle Scholar
  109. Villunger, A., Michalak, E. M., Coultas, L., Mullauer, F., Bock, G., Ausserlechner, M. J., Adams, J. M., and Strasser, A. (2003). p53- and drug-induced apoptotic responses  mediated by BH3-only proteins puma and noxa. Science 302, 1036-1038.PubMedGoogle Scholar
  110. Vogelstein, B., and Kinzler, K. W. (1992). p53 function and dysfunction. Cell 70, 523-526.PubMedGoogle Scholar
  111. Vogelstein, B., Lane, D., and Levine, A. J. (2000). Surfing the p53 network. Nature 408, 307-310.PubMedGoogle Scholar
  112. Vousden, K. H., and Lu, X. (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2, 594-604.PubMedGoogle Scholar
  113. Vousden, K. H., and Woude, G. F. (2000). The ins and outs of p53. Nat Cell Biol 2, E178-180.PubMedGoogle Scholar
  114. Waga, S., Hannon, G. J., Beach, D., and Stillman, B. (1994). The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574-578.PubMedGoogle Scholar
  115. Wang, S., and El-Deiry, W. S. (2003a). Requirement of p53 targets in chemosensitization of colonic carcinoma to death ligand therapy. Proc Natl Acad Sci U S A 100, 15095-15100.PubMedGoogle Scholar
  116. Wang, S., and El-Deiry, W. S. (2003b). TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22, 8628-8633.PubMedGoogle Scholar
  117. Wang, S., and El-Deiry, W. S. (2004). Inducible silencing of KILLER/DR5 in vivo promotes bioluminescent colon tumor xenograft growth and confers resistance to chemotherapeutic agent 5-Fluorouracil. Cancer Res 64, 6666-6672.PubMedGoogle Scholar
  118. Webster, G. A., and Perkins, N. D. (1999). Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 19, 3485-3495.PubMedGoogle Scholar
  119. Wei, X., Yu, Z. K., Ramalingam, A., Grossman, S. R., Yu, J. H., Bloch, D. B., and Maki, C.G. (2003). Physical and functional interactions between PML and MDM2. J Biol Chem 278, 29288-29297.PubMedGoogle Scholar
  120. Weinert, T. A., and Hartwell, L. H. (1990). Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol Cell Biol 10, 6554-6564.PubMedGoogle Scholar
  121. Woods, D. B., and Vousden, K. H. (2001). Regulation of p53 function. Exp Cell Res 264, 56-66.PubMedGoogle Scholar
  122. Wu, G. S., Burns, T. F., McDonald, E. R., 3rd, Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R., et al. (1997). KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17, 141-143.PubMedGoogle Scholar
  123. Wu, G. S., and El-Deiry, W. S. (1996). Apoptotic death of tumor cells correlates with chemosensitivity, independent of p53 or bcl-2. Clin Cancer Res 2, 623-633.PubMedGoogle Scholar
  124. Wu, X., Bayle, J. H., Olson, D., and Levine, A. J. (1993). The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7, 1126-1132.PubMedGoogle Scholar
  125. Xirodimas, D. P., Saville, M. K., Bourdon, J. C., Hay, R. T., and Lane, D. P. (2004). Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118, 83-97.PubMedGoogle Scholar
  126. Yin, C., Knudson, C. M., Korsmeyer, S. J., and Van Dyke, T. (1997). Bax suppresses tumorigenesis and stimulates apoptosis in vivo. Nature 385, 637-640.PubMedGoogle Scholar
  127. Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., and Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345-347.PubMedGoogle Scholar
  128. Yu, J., and Zhang, L. (2003). No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4, 248-249.PubMedGoogle Scholar
  129. Zhan, Q., Chen, I. T., Antinore, M. J., and Fornace, A. J., Jr. (1998). Tumor suppressor p53 can participate in transcriptional induction of the GADD45 promoter in the absence of direct DNA binding. Mol Cell Biol 18, 2768-2778.PubMedGoogle Scholar
  130. Zhou, B. P., Liao, Y., Xia, W., Zou, Y., Spohn, B., and Hung, M. C. (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3, 973-982.PubMedGoogle Scholar
  131. Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J., and Thompson, C.B. (2003). Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162, 59-69PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Departments of Medicine, Genetics, Pharmacology, and Abramson Cancer CenterUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations