Skip to main content

20 Years of DNA Damage Signaling to p53

  • Chapter
25 Years of p53 Research

The short history of p53 contains an overwhelming number of facts and hypotheses, presenting the challenge of integrating diverse and sometimes mutually exclusive ideas into a coherent picture. It is important to make a distinction between p53 tumor suppressor activity, the mechanism of which remains speculative, and p53 responses to DNA damage, which are well characterized. Because critical steps in tumorigenesis involve genomic fixation of DNA damage-induced mutations, it seems reasonable to assume that DNA damage signaling to p53 would activate p53 tumor suppressor activity. However, this has not been demonstrated, and p53 tumor suppressor activity may not require the acute p53 response to DNA damage (Komarov et al., 1999). Nonetheless, the genotoxic chemicals and ionizing radiation that are clinically used to treat human cancer indisputably activate wild type p53.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refereeences

  • Ahn, J.-Y., Schwarz, J.K., Piwnica-Worms, H., and Canman, C.E.(2000). Threonine68 phosphorylation by ATM is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Research 60, 5934-5936.

    CAS  PubMed  Google Scholar 

  • Arai, N., Nomura, D., Yokota, K., Wolf, D., Brill, E., Shohat, O., and Rotter, V. (1986). Immunologically distinct p53 molecules generated by alternative splicing. Mol Cell Biol 6, 3232-3239.

    CAS  PubMed  Google Scholar 

  • Bakalkin, G., Yakovleva, T., Selivanova, G., Magnusson, K.P., Szekely, L., Kiseleva, E., Klein, G., Terenius, L., and Wiman, K.G. (1994). p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci USA 91, 413-417.

    CAS  PubMed  Google Scholar 

  • Bakkenist, C.J. and Kastan, M.B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499-506.

    CAS  PubMed  Google Scholar 

  • Balagurumoorthy,P.,Sakamoto,H.,Lewis,M.S.,Zambrano,N.,Clore,G.M.,Gronenborn,A.M., Appella,E., and Harrington,R.E. (1995). Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. Proc Natl Acad Sci USA 92, 8591-8595.

    CAS  PubMed  Google Scholar 

  • Banin, S., Moyal, L., Shieh, S.-Y., Taya, Y., Anderson, C.W., Chessa, L., Smorodinsky, N.I., Prives, C., Reiss, Y., Shiloh, Y., and Ziv, Y. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674-1677.

    CAS  PubMed  Google Scholar 

  • Canman, C.E., Gilmer, T., Coutts, S., and Kastan, M.B. (1995). Growth factor modulation of p53-mediated growth arrest vs. apoptosis. Genes Dev. 9, 600-611.

    CAS  PubMed  Google Scholar 

  • Canman, C.E., Lim, D.-S., Cimprich, K.A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M.B., and Siliciano, J.D. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677-1679.

    CAS  PubMed  Google Scholar 

  • Canman, C.E., Wolff, A.C., Chen, C., Fornace, A.J., and Kastan, M.B. (1994). The p53-dependent G1 Cell Cycle Checkpoint Pathway and Ataxia-Telangiectasia. Cancer Res 54, 5054-5058.

    CAS  PubMed  Google Scholar 

  • Cao, L., Li, W., Kim, S., Brodie, S.G., and Deng, C.X. (2003). Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev. 17, 201-213.

    CAS  PubMed  Google Scholar 

  • Chao, C., Saito, S., Anderson, C.W., Appella, E., and Xu, Y. (2000). Phosphorylation of murine p53 at Ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci USA 97, 11936-11941.

    CAS  PubMed  Google Scholar 

  • Chehab, N.H., Malikzay, A., Stavridi, E.S., and Halazonetis, T.D. (1999). Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96, 13777-13782.

    CAS  PubMed  Google Scholar 

  • Cho, Y., Gorina, S., Jeffery, P.D., and Pavletich, N.P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science 265, 346-355.

    CAS  PubMed  Google Scholar 

  • Clarke, A.R., Purdie, C.A., Harrison, D.J., Morris, R.G., Bird, C.C., Hooper, M.L., and Wyllie, A.H. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849-852.

    CAS  PubMed  Google Scholar 

  • D'Orazi, G., Cecchinelli, B., Bruno, T., Manni, I., Higashimoto, Y., Saito, S., Gostissa, M., Coen, S., Marchetti, A., Del Sal, G., Piaggio, G., Fanciulli, M., Appella, E., and Soddu, S. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4, 11-9.

    PubMed  Google Scholar 

  • Davison, T.S., Vagner, C., Kaghad, M., Ayed, A., Caput, D., and Arrowsmith, C.H. (1999). p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J. Biol. Chem. 274, 18709-18714.

    CAS  PubMed  Google Scholar 

  • Deleo, A.B., Jay, G., Appells, E., Dubois, G.C., Law, L.W., and Old, L.J. (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transfromed cells of the mouse. Proc Natl Acad Sci USA 76, 2420-2424.

    CAS  PubMed  Google Scholar 

  • Di Leonardo, A., Linke, S.P., Clarkin, K., and Wahl, G.M. (1994). DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540-2551.

    PubMed  Google Scholar 

  • Dornan, D. and Hupp, T.R. (2001). Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep 2, 139-144.

    CAS  PubMed  Google Scholar 

  • Dulic, V., Kaufmann, W.K., Wilson, S.J., Tlsty, T.D., Lees, E., Harper, W., Elledge, S.J., and Reed, S.I. (1994). p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76, 1013-1023.

    CAS  PubMed  Google Scholar 

  • Dumaz, N. and Meek, D.W. (1999). Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 18, 7002-7010.

    CAS  PubMed  Google Scholar 

  • Dumaz, N., Milne, D.M., and Meek, D.W. (1999). Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15. FEBS Letters 463, 312-316.

    CAS  PubMed  Google Scholar 

  • Durell, S.R., Appella, E., Nagaich, A.K., Harrington, R.E., Jernigan, R.L., and Zhurkin, V.B. (1998). DNA bending induced by tetrameric binding of the tumor-suppressive p53 protein: steric constraints on conformation. In Macromolecules, proc. structure, motion, interactions and expression of biological of the tenth conversation, R.H.Sarma and M.H.Sarma, eds. (Albany, NY: Adenine Press), pp. 277-295.

    Google Scholar 

  • El-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler, K.W., and Vogelstein, B. (1992). Definition of a consensus binding site for p53. Nature 356, 215-221.

    Google Scholar 

  • El-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825.

    CAS  PubMed  Google Scholar 

  • Espinosa, J.M. and Emerson, B.M. (2001). Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8, 57-69.

    CAS  PubMed  Google Scholar 

  • Fei, P., Bernhard, E.J., and El-Deiry, W.S. (2002). Tissue-specific induction of p53 targets in vivo. Cancer Res. 62, 7316-7327.

    CAS  PubMed  Google Scholar 

  • Flores, E.R., Tsai, K.Y., Crowley, D., Sengupta, S., Yang, a., McKeon, F., and Jacks, T. (2002). p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560-564.

    Google Scholar 

  • Friedberg, E.C. (2003). DNA damage and repair. Nature 421, 436-440.

    PubMed  Google Scholar 

  • Fu, L. and Benchimo l,S. (1997). Participation of the human p53 3'UTR in translational repression and activation following y-irradiation. EMBO J 16, 4117-4125.

    CAS  PubMed  Google Scholar 

  • Funk, W.D., Pak, D.T., Karas, R.H., Wright, W.E., and Shay, J.W. (1992). A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol 12, 2866-2871.

    CAS  PubMed  Google Scholar 

  • Galmarini, C.M., Voorzanger, N., Falette, N., Jordheim, L., Cros, E., Puisieux, A., and Dumontet, C. (2003). Influence of p53 and p21(WAF1) expression on sensitivity of cancer cells to cladribine. Biochem Pharmacol 65, 121-129.

    CAS  PubMed  Google Scholar 

  • Giaccia, A.J. and Kastan, M.B. (1998). The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973-2983.

    CAS  PubMed  Google Scholar 

  • Gorina, S. and Pavletich, N.P. (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274, 1001-1005.

    CAS  PubMed  Google Scholar 

  • Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S.E., Scheffner, M., and Del Sal, G. (1999). Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1.EMBO J 18, 6462-6471.

    CAS  Google Scholar 

  • Grossman, S.R., Deato, M.E., Brignone, C., Chan, H.M., Kung, A.L., Tagami, H., Nakatani, Y., and Livingston, D.M. (2003). Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342-344.

    CAS  PubMed  Google Scholar 

  • Gu, W. and Roeder, R.G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606.

    CAS  PubMed  Google Scholar 

  • Guo, Z., Kumagai, A., Wang, S.X., and Dunphy, W.G. (2000). Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev. 14, 2745-2756.

    CAS  PubMed  Google Scholar 

  • Gupta, M., Fan, S., Zhan, Q., Kohn, K.W., O'Connor, P.M., and Pommier, Y. (1997). Inactivation of p53 increases the cytotoxicity of camptothecin in human colon HCT116 and breast MCF-7 cancer cells. Clinical Cancer Research 3, 1653-1660.

    CAS  PubMed  Google Scholar 

  • Halazonetis, T.D. and Kandil, A.N. (1993). Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J 12, 5057-5064.

    CAS  PubMed  Google Scholar 

  • Han. Z., Wei, W., Dunaway, S., Darnowski, J.W., Calabresi, P., Sedivy, J., Hendrickson, E.A., Balan, K.V., Pantazis, P., and Wyche, J.H. (2002). Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J. Biol. Chem. 277, 17154-17160.

    CAS  PubMed  Google Scholar 

  • Hartwell, L.H. and Weinert, T.A. (1989). Checkpoints: Controls that ensure the order of cell cycle enents. Science 246, 629-634.

    CAS  PubMed  Google Scholar 

  • Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299.

    CAS  PubMed  Google Scholar 

  • Hirao, A., Kong, Y.-Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., Liu, D., Elledge, S.J., and Mak, T.W.(2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824-1827.

    CAS  PubMed  Google Scholar 

  • Hofmann, T.G., Moller, A., Sirma, H., Zentgraf, H., Taya, Y., Droge, W., Will, H., and Schmitz, M.L. (2002). Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4, 1-10.

    CAS  PubMed  Google Scholar 

  • Honda, R., Tanaka, H., and Yasuda, H. (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Letters 420, 25-27.

    CAS  PubMed  Google Scholar 

  • Hupp, T.R., Meek, D.W., Midgley, C.A., and Lane, D.P. (1992). Regulation of the specific DNA binding function of p53. Cell 71, 875-886.

    CAS  PubMed  Google Scholar 

  • Hupp, T.R., Sparks, A., and Lane, D.P. (1995). Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83, 237-245.

    CAS  PubMed  Google Scholar 

  • Ito, A., Kawaguchi, Y., Lai, C.H., Kovacs, J.J., Higashimoto, Y., Appella, E., and Yao, T.P. (2002). MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21, 6236-6245.

    CAS  PubMed  Google Scholar 

  • Ito, A., Lai, C.H., Zhao, X., Saito, S., Hamilton, M.H., Appella, E., and Yao, T.P. (2001). p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 20, 1331-1340.

    CAS  PubMed  Google Scholar 

  • Jayaraman, L., Murthy, K.G.K., Zhu, C., Curran, T., Xanthoudakis, S., and Prives, C. (1997). Identification of redox-repair protein Ref-1 as a potent activator of p53. Genes Dev. 11, 558-570.

    CAS  PubMed  Google Scholar 

  • Jayaraman, L. and Prives, C. (1995). Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81, 1021-1029.

    CAS  PubMed  Google Scholar 

  • Jimenez, G.S., Bryntesson, F., Torres-Arzayus, M.I., Priestley, A., Beeche, M., Saito, S., Sakaguchi, K., Appella, E., Jeggo, P.A., Tacciolo, G.E., Wahl, G.M., and Hubank, M. (1999). DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature 400, 81-83.

    CAS  PubMed  Google Scholar 

  • Kaeser, M.D. and Iggo, R.D. (2002). Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 99, 95-100.

    CAS  PubMed  Google Scholar 

  • Kapoor, M. and Lozano, G. (1998). Functional activation of p53 via phosphorylation following DNA damage by UV but not y radiation. Pro Natl Acad Sci USA 95, 2834-2837.

    CAS  Google Scholar 

  • Kastan, M.B. and Kuerbitz, S.J. (1993). Control of G1 arrest after DNA damage. Environ. Health Persp. 101 (suppl 5), 55-58.

    CAS  Google Scholar 

  • Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R.W. (1991). Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51, 6304-6311.

    CAS  PubMed  Google Scholar 

  • Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B., and Fornace, A.J., Jr. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587-597.

    CAS  PubMed  Google Scholar 

  • Kern, S.E., Kinzler, K.W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C., and Vogelstein, B. (1991). Identification of p53 as a sequence-specific DNA-binding protein. Science 252, 1708-1711.

    CAS  PubMed  Google Scholar 

  • Khan, S.H. and Wahl, G.M. (1998). p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest. Cancer Res 58, 396-401.

    CAS  PubMed  Google Scholar 

  • Khanna, K.K. and Lavin, M.F. (1993). Ionizing Radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 8, 3307-3312.

    CAS  PubMed  Google Scholar 

  • Komarov, P.G., Komarova, E.A., Kondratov, R.V., Christov-Tselkov, K., Coon, J.S., Chernov, M.V., and Gudkov, A.V. (1999). A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733-1737.

    CAS  PubMed  Google Scholar 

  • Kubbutat, M.H., Jones, S.N., and Vousden, K.H. (1997). Regulation of p53 stability by Mdm2. Nature 387, 299-303.

    CAS  PubMed  Google Scholar 

  • Kussie, P.H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A.J., and Pavletich, N.P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948-953.

    CAS  PubMed  Google Scholar 

  • Lane, D.P. and Crawford, L.V. (1979). T antigen is bound to host protein in SV40 transformed cells. Nature 278, 261-263.

    CAS  PubMed  Google Scholar 

  • Lee, E.J., Gerhold, M., Palmer, M.W., and Christen, R.D. (2003). p53 protein regulates the effects of amifostine on apoptosis, cell cycle progression, and cytoprotection. Br. J. Cancer 88, 754-759.

    CAS  PubMed  Google Scholar 

  • Lee, S., Elenbaas, B., Levine, A., and Griffith, J. (1995). p53 and its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81, 1013-1020.

    CAS  PubMed  Google Scholar 

  • Lee, S.J., Dimtchev, A., Lavin, M., Dritschilo, A., and Jung, M. (1998). A novel ionizing radiation-induced signaling pathway that activates the transcription factor NF-kB. Oncogene 17, 1821-1826.

    CAS  PubMed  Google Scholar 

  • Lees-Miller, S.P., Sakaguchi, K., Ullrich, S.J., Appella, E., and Anderson, C.W. (1992). Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12, 5041-5049.

    CAS  PubMed  Google Scholar 

  • Lin. J., Blake, M., Tang, C., Zimmer, D., Rustandi, R.R., Weber, D.J., and Carrier, F. (2001). Inhibition of p53 transcriptional activity by the S100B calcium-binding protein. J. Biol. Chem. 276, 35037-35041.

    CAS  PubMed  Google Scholar 

  • Linzer, D.I. and Levine, A.J. (1979). Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43-52.

    CAS  PubMed  Google Scholar 

  • Liu, Q., Guntuku, S., Cui, X.-S., Matsuoka, S., Cortez, D., Tamai, K., Luo, G., Carattini-Rivera, S., DeMayo, F., Bradley, A., Donehower, L.A., and Elledge, S.J. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G2 /M DNA damage checkpoint. Genes Dev 14, 1448-1459.

    CAS  PubMed  Google Scholar 

  • Livingstone, L.R., White, A., Sprouse, J., Livanos, E., Jacks, T., and Tlsty, T.D. (1992). Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923-935.

    CAS  PubMed  Google Scholar 

  • Lowe, S.W., Schmitt, S.W., Smith, S.W., Osborne, B.A., and Jacks, T. (1993). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847-849.

    CAS  PubMed  Google Scholar 

  • Lu, H., Taya, Y., Ikeda, M., and Levine, A.J. (1998). Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci USA 95, 6399-6402.

    CAS  PubMed  Google Scholar 

  • Magrini, R., Bhonde, M.R., Hanski, M.L., Notter, M., Scherubl, H., Boland, C.R., Zeitz, M., and Hanski, C. (2002). Cellular effects of CPT-11 on colon carcinoma cells: dependence on p53 and hMLH1 status. Int J Cancer 101, 23-31.

    CAS  PubMed  Google Scholar 

  • Maki, C.G. and Howley, P.M. (1997). Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol Cell Biol 17, 355-363.

    CAS  PubMed  Google Scholar 

  • Maltzman, W. and Czyzyk, L. (1984). UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4(9), 1689-1694.

    CAS  PubMed  Google Scholar 

  • Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., and Elledge, S.J. (2000). Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97, 10389-10394.

    CAS  PubMed  Google Scholar 

  • Maya, R., Balass, M., Kim, S.-T., Shkedy, D., Leal, J.-F.M., Shifman, O., Moas, M., Buschmann, T., Ronai, Z., Shiloh, Y., Kastan, M.B., Katzir, E., and Oren, M. (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15, 1067-1077.

    CAS  PubMed  Google Scholar 

  • Mazan-Mamczarz, K., Galban, S., Lopez de Silanes, I., Martindale, J.L., Atasoy, U., Keene, J.D., and Gorospe, M. (2003). RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci USA 100, 8354-8359.

    CAS  PubMed  Google Scholar 

  • McLure, K.G. and Lee, P.W.K. (1998). How p53 binds DNA as a tetramer. EMBO J 17, 3342-3350.

    CAS  PubMed  Google Scholar 

  • Melchionna, R., Chen, X.-B., Blasina, A., and McGowan, C.H. (2000). Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nature Cell Biol 2, 762-765.

    CAS  PubMed  Google Scholar 

  • Middeler, G., Zerf, K., Jenovai, S., Thulig, A., Tschodrichrotter, M., Kubitscheck, U., and Peters, R. (1997). The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-dependent and lectin-inhibited. Oncogene 14, 1407-1417.

    CAS  PubMed  Google Scholar 

  • Midgley, C.A. and Lane, D.P. (1997). p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15, 1179-1189.

    CAS  PubMed  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U.M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11, 577-590.

    CAS  PubMed  Google Scholar 

  • Momand, J., Zambetti, G.P., Olson, D.C., George, D.L., and Levine, A.J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237-1245.

    CAS  PubMed  Google Scholar 

  • Morozov, V.E., Falzon, M., Anderson, C.W., and Kuff, E.L. (1994). DNA-dependent protein kinase is activated by nicks and larger single-stranded gaps. J. Biol. Chem. 269, 16684-16688.

    CAS  PubMed  Google Scholar 

  • Nicholls, C.D., McLure, K.G., Shields, M.A., and Lee, P.W. (2002). Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J. Biol. Chem. 277, 12937-12945.

    CAS  PubMed  Google Scholar 

  • Nichols, N.M. and Matthews, K.S. (2002). Human p53 phosphorylation mimic, S392E, increases nonspecific DNA affinity and thermal stability. Biochemistry 41, 170-178.

    CAS  PubMed  Google Scholar 

  • Nie, Y., Li, H.-H., Bula, C.M., and Liu, X. (2000). Stimulation of p53 DNA binding by c-Abl requires the p53 C terminus and tetramerization. Mol Cell Biol 20, 741-748.

    CAS  PubMed  Google Scholar 

  • Offer, H., Wolkowicz, R., Matas, D., Blumenstein, S., Livneh, A., and Rotter, V. (1999). Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Letters 450, 197-204.

    CAS  PubMed  Google Scholar 

  • Okorokov, A.L., Ponchel, F., and Milner, J. (1997). Induced N- and C-terminal cleavage of p53: a core fragment of p53, generated by interaction with damaged DNA, promotes cleavage of the N-terminus of full-length p53, whereas ssDNA induces C-terminal cleavage of p53. EMBO J 16, 6008-6017.

    CAS  PubMed  Google Scholar 

  • Oliner, J.D., Pietenpol, J.A., Thiagalingam, S., Gyuris, J., Kinzler, K.W., and Vogelstein, B. (1993). Oncoprotein mdm2 conceals the activation domain of tumor suppressor p53. Nature 362, 857-860.

    CAS  PubMed  Google Scholar 

  • Pestina, T.I., Cleveland, J.L., Yang, C., Zambetti, G.P., and Jackson, C.W. (2001). Mpl ligand prevents lethal myelosuppression by inhibiting p53-dependent apoptosis. Blood 98, 2084-2090.

    CAS  PubMed  Google Scholar 

  • Phelps, M., Darley, M., Primrose, J.N., and Blaydes, J.P. (2003). p53-independent activation of the hdm2-P2 promoter through multiple transcription factor response elements results in elevated hdm2 expression in estrogen receptor alpha-positive breast cancer cells. Cancer Res. 63, 2616-2623.

    CAS  PubMed  Google Scholar 

  • Reed, M., Woelker, B., Wang, P., Wang, Y., Anderson, M.E., and Tegrmeyer, P. (1995). The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc Natl Acad Sci USA 92, 9455-9459.

    CAS  PubMed  Google Scholar 

  • Ries, S., Biederer, C., Woods, D., Shifman, O., Shirasawa, S., Sasazuki, T., McMahon, M., Oren, M., and McCormick, F. (2000). Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321-330.

    CAS  PubMed  Google Scholar 

  • Rodriguez, M. S., Desterro, J. M. P., Lain, S., Midgley, C. A., Lane, D. P., and Hay, R. T. (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J 18, 6455-6461.

    CAS  PubMed  Google Scholar 

  • Rouse, J. and Jackson, S.P. (2002). Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547-551.

    CAS  PubMed  Google Scholar 

  • Rubbi, C.P. and Milner, J. (2003a). Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22, 6068-6077.

    CAS  PubMed  Google Scholar 

  • Rubbi, C.P. and Milner, J. (2003b). p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 22, 975-986.

    CAS  PubMed  Google Scholar 

  • Sakaguchi, K., Herrera, J.E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C.W., and Appella, E. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12, 2831-2841.

    CAS  PubMed  Google Scholar 

  • Sakaguchi, K., Saito, S., Higashimoto, Y., Roy, S., Anderson, C.W., and Appella, E.(2000).Damage-mediated phosphorylation of human p53 threonine18 through a cascademediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem 275, 9278-9283.

    CAS  PubMed  Google Scholar 

  • Samuels-Lev, Y., O'Connor, D.J., Bergamaschi, D., Trigiante, G., Hsieh, J.-K., Zhong, S., Campargue, I., Naumovski, L., Crook, T., and Lu, X. (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8, 781-794.

    CAS  PubMed  Google Scholar 

  • Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D.A., Smith, S., Uziel, T., Sfez, S., Ashkenazi, M., Pecker, I., Frydman, M., Harnik, R., Patanjali, S.R., Simmons, A., Clines, G.A., Sartiel, A., Gatti, R.A., Chessa, L., Sanal,O., Lavin, M.F., Jaspers, N.G.J., Taylor, A.M.R., Arlett, C.F., Miki, T., Weissman, S.M., Lovett, M., Collins, F.S., and Shiloh, Y. (1995). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749-1753.

    CAS  PubMed  Google Scholar 

  • Shieh, S.-Y., Ikeda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334.

    CAS  PubMed  Google Scholar 

  • Shieh, S.-Y., Taya, Y., and Prives, C. (1999). DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J 18, 1815-1823.

    CAS  PubMed  Google Scholar 

  • Siliciano, J.D., Canman, C.E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M.B. (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11, 3471-3481.

    CAS  PubMed  Google Scholar 

  • Sluss, H.K., Armata, H., Gallant, J., and Jones, S.N.(2004). Phosphorylation of serine18 regulates distinct p53 functions in mice. Mol Cell Biol 24, 976-984.

    CAS  PubMed  Google Scholar 

  • Stewart, Z.A., Leach, D.L., and Pietenpol, J. (1999a). p21 Waf1/Cip1 Inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption. Mol Cell Biol 19, 205-215.

    CAS  PubMed  Google Scholar 

  • Stewart, Z.A., Mays, D., and Pietenpol, J.A. (1999b). Defective G 1-S cell cycle checkpoint function sensitizes cells to microtubule inhibitor-induced apoptosis. Cancer Research 59, 3831-3837.

    CAS  PubMed  Google Scholar 

  • Stommel, J.M., Marchenko, N.D., Jimenez, G.S., Moll, U.M., Hope, T.J., and Wahl, G.M. (1999). A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18, 1660-1672.

    CAS  PubMed  Google Scholar 

  • Sturzbecher, H.W., Brain, R., Addison, C., Rudge, K., Remm, M., Grimaldi, M., Keenan, E., and Jenkins, J.R. (1992). A C-terminal alpha-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7, 1513-1523.

    CAS  PubMed  Google Scholar 

  • Szak, S.T., Mays, D., and Pietenpol, J.A. (2001). Kinetics of p53 binding to promoter sites in vivo. Mol Cell Biol 21, 3375-3386.

    CAS  PubMed  Google Scholar 

  • Takenaka, I., Morin, F., Seizinger, B.R., and Kley, N. (1995). Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases. J. Biol. Chem. 270, 5405-5411.

    CAS  PubMed  Google Scholar 

  • Tao, W. and Levine, A.J. (1999). Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci USA 96, 3077-3080.

    CAS  PubMed  Google Scholar 

  • Tibbetts, R.S., Brumbaugh,K.M., Williams,J.M., Sarkaria,J.N., Cliby,W.A., Shieh,S.Y., Taya,Y., Prives,C., and Abraham,R.T. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152-157.

    CAS  PubMed  Google Scholar 

  • Tishler, R.B., Calderwood, S.K., Coleman, C.N., and Price, B.D. (1993). Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Res 53, 2212-2216.

    CAS  PubMed  Google Scholar 

  • Turenne, G.A., Paul, P., Laflair, L., and Price, B.D. (2001). Activation of p53 transcriptional activity requires ATM's kinase domain and multiple N-terminal serine residues of p53. Oncogene 20, 5100-5110.

    CAS  PubMed  Google Scholar 

  • Unger, T., Juven-Gershon, T., Moallem, E., Berger, M., Sionov, R.V., Lozano, G., Oren, M., and Haupt, Y. (1999). Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. EMBO J. 18, 1805-1814.

    CAS  PubMed  Google Scholar 

  • Unsal-Kacmaz, K. and Sancar, A. (2004). Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. Mol Cell Biol 24, 1292-1300.

    CAS  PubMed  Google Scholar 

  • Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T.K., Hampton, G.M., and Wahl, G.M. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9, 1031-1044.

    CAS  PubMed  Google Scholar 

  • Vaziri, C., Saxena, S., Jeon, Y., Lee, C., Murata, K., Machida, Y., Wagle, N., Hwang, D.S., and Dutta, A. (2003). A p53-dependent checkpoint pathway prevents rereplication. Mol Cell 11, 997-1008.

    CAS  PubMed  Google Scholar 

  • Wang, X., Zou, L., Zheng, H., Wei, Q., Elledge, S.J., and Li, L. (2003). Genomic instability and endoreduplication triggered by RAD17 deletion. Genes Dev. 17, 965-970.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Schwedes, J.F., Parks, D., Mann, K., and Tegtmeyer, P. (1995). Interaction of p53 with its consensus DNA-binding site. Mol Cell Biol 15, 2157-2165.

    CAS  PubMed  Google Scholar 

  • Waterman, J.L., Shenk, J.L., and Halazonetis, T.D. (1995). The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. EMBO J 14, 512-519.

    CAS  PubMed  Google Scholar 

  • Waterman, M.J., Stavridi, E.S., Waterman, J.L.F., and Halazonetis, T.D. (1998). ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nature Genetics 19, 175.

    CAS  PubMed  Google Scholar 

  • Weinert, T.A. and Hartwell, L.H. (1988). The RAD9 gene controls the cell cycle response to DNA damage in saccharomyces cerevisiae. Science 241, 317-322.

    CAS  PubMed  Google Scholar 

  • Will, K., Warnecke, G., Bergmann, S., and Deppert, W. (1995). Species- and tissue-specific expression of the C-terminal alternatively spliced form of the tumor suppressor p53. Nucleic Acids Res 23, 4023-4028.

    CAS  PubMed  Google Scholar 

  • Woo, R.A., Jack, M.T., Xu, Y., Burma, S., Chen, D.J., and Lee, P.W. (2002). DNA damage-induced apoptosis requires the DNA-dependent protein kinase, and is mediated by the latent population of p53. EMBO J 21, 3000-3008.

    CAS  PubMed  Google Scholar 

  • Woo, R.A., McLure, K.G., Lees-Miller, S.P., Rancourt, D.E., and Lee, P.W.K. (1998). DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature 394, 700-705.

    CAS  PubMed  Google Scholar 

  • Wu, X., Bayle, H., Olson, D., and Levine, A.J. (1993). The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7, 1126-1132.

    CAS  PubMed  Google Scholar 

  • Wu, Z., Earle, J., Saito, S., Anderson, C.W., Appella, E., and Xu, Y. (2002). Mutation of mouse p53 Ser23 and the response to DNA damage. Mol Cell Biol. 22, 2441-2449.

    CAS  PubMed  Google Scholar 

  • Xanthoudakis, S., Miao, G., Wang, F., Pan, Y.-C.E., and Curran, T. (1992). Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 11, 3323-3335.

    CAS  PubMed  Google Scholar 

  • Zhao, H. and Piwnica-Worms, H. (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21, 4129-4139.

    CAS  PubMed  Google Scholar 

  • Zhou, J., Ahn, J., Wilson, S.H., and Prives, C. (2001). A role for p53 in base excision repair. EMBO J 20, 914-923.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

McLure, K.G., Kastan, M.B. (2007). 20 Years of DNA Damage Signaling to p53. In: Hainaut, P., Wiman, K.G. (eds) 25 Years of p53 Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2922-6_3

Download citation

Publish with us

Policies and ethics