Mutant p53 Reactivation as a Novel Strategy for Cancer Therapy

  • Galina Selivanova
  • Vladimir J. N. Bykov
  • Klas G. Wiman

Inactivation of the p53 tumor suppressor by point mutation occurs in a large fraction of human tumors, including almost all tumor types (see p53 Mutation database at A majority of p53 mutations are missense mutations that give rise to the expression of mutant p53 proteins with one amino acid substitution. This pattern of mutation stands in sharp contrast to those of most other tumor suppressor genes, e.g. the Rb and p16 genes, which are frequently inactivated by homozygous deletion, smaller deletions or promoter methylation that either results in complete lack of expression of the protein, or expression of a truncated unstable protein. This suggests that p53 mutation not only serves to inactivate p53 but that expression of mutant p53 itself may provide a selective advantage to tumor cells and promote tumor growth. First, point mutant p53 proteins may act in a dominant negative manner, i.e. inhibit the activity of a wild type allele present in the same cell through hetero-oligomerization that forces wild type p53 to adopt a mutant conformation (Milner and Medcalf 1991). In addition, mutant p53 proteins may have acquired novel activites that could support the growth of tumors. These so called gain-of-function (GOF) activities of mutant p53 could involve promiscuous DNA binding and illegitimate activation of target genes, such as the c-Myc oncogene, the multidrug resistance gene (MDR1), VEGF, and the dUTPase gene ((Frazier et al. 1998; Pugacheva et al. 2002; Tsang et al. 2003);, whose activation could contribute to tumor development. Moreover, mutant p53 could enhance cell cycle progression and/or cell survival through novel interactions with cellular protein partners, as examplified by the binding of mutant p53 to p73 and other p53 family members (Di Como et al. 1999; Marin and Kaelin 2000; Strano et al. 2002; Monti et al. 2003; Strano and Blandino 2003).


Core Domain National Cancer Institute Database Transcription Activation Function Mutant Conformation dUTPase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarzua, P., J.E. LoSardo, M.L. Gubler, and A. Neri. 1995. Microinjection of monoclonal antibody PAb421 into human SW480 colorectal carcinoma cells restores the transcription activation function to mutant p53. Cancer Res 55: 3490-4.PubMedGoogle Scholar
  2. Abarzua, P., J.E. LoSardo, M.L. Gubler, R. Spathis, Y.A. Lu, A. Felix, and A. Neri. 1996. Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene 13: 2477-82.PubMedGoogle Scholar
  3. Bergh, J., T. Norberg, S. Sjogren, A. Lindgren, and L. Holmberg. 1995. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med 1: 1029-34.CrossRefPubMedGoogle Scholar
  4. Bertheau, P., F. Plassa, M. Espie, E. Turpin, A. de Roquancourt, M. Marty, F. Lerebours, Y. Beuzard, A. Janin, and H. de The. 2002. Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet 360: 852-4.CrossRefPubMedGoogle Scholar
  5. Bjornsti, M.A. and P.J. Houghton. 2004. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4: 335-48.CrossRefPubMedGoogle Scholar
  6. Blagosklonny, M.V., J. Toretsky, S. Bohen, and L. Neckers. 1996. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc Natl Acad Sci U S A 93: 8379-83.CrossRefPubMedGoogle Scholar
  7. Bode, A.M. and Z. Dong. 2004. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793-805.CrossRefPubMedGoogle Scholar
  8. Borresen, A.L., T.I. Andersen, J.E. Eyfjord, R.S. Cornelis, S. Thorlacius, A. Borg, U. Johansson, C. Theillet, S. Scherneck, and S. Hartman. 1995. TP53 mutations and breast cancer prognosis: particularly poor survival rates for cases with mutations in the zinc-binding domains. Genes Chromosomes Cancer 14: 71-5.CrossRefPubMedGoogle Scholar
  9. Bossi, G., R. Scardigli, P. Musiani, R. Martinelli, M.P. Gentileschi, S. Soddu, and A. Sacchi. 2000. Development of a murine orthotopic model of leukemia: evaluation of TP53 gene therapy efficacy. Cancer Gene Ther 7: 135-43.CrossRefPubMedGoogle Scholar
  10. Bulavin, D.V., O.N. Demidov, S. Saito, P. Kauraniemi, C. Phillips, S.A. Amundson, C. Ambrosino, G. Sauter, A.R. Nebreda, C.W. Anderson, A. Kallioniemi, A.J. Fornace, Jr., and E. Appella. 2002. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31: 210-5.CrossRefPubMedGoogle Scholar
  11. Bulavin, D.V., S. Saito, M.C. Hollander, K. Sakaguchi, C.W. Anderson, E. Appella, and A.J. FornaceJr, . 1999. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. Embo J 18: 6845-54.CrossRefPubMedGoogle Scholar
  12. Bullock, A.N. and A.R. Fersht. 2001. Rescuing the function of mutant p53. Nat Rev Cancer 1: 68-76.CrossRefPubMedGoogle Scholar
  13. Bunz, F., A. Dutriaux, C. Lengauer, T. Waldman, S. Zhou, J.P. Brown, J.M. Sedivy, K.W. Kinzler, and B. Vogelstein. 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497-501.CrossRefPubMedGoogle Scholar
  14. Bunz, F., P.M. Hwang, C. Torrance, T. Waldman, Y. Zhang, L. Dillehay, J. Williams, C. Lengauer, K.W. Kinzler, and B. Vogelstein. 1999. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263-9.CrossRefPubMedGoogle Scholar
  15. Bykov, V.J., N. Issaeva, G. Selivanova, and K.G. Wiman. 2002a. Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database. Carcinogenesis 23: 2011-8.CrossRefPubMedGoogle Scholar
  16. Bykov, V.J., N. Issaeva, A. Shilov, M. Hultcrantz, E. Pugacheva, P. Chumakov, J. Bergman, K.G. Wiman, and G. Selivanova. 2002b. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282-8.CrossRefPubMedGoogle Scholar
  17. Bykov, V.J., G. Selivanova, and K.G. Wiman. 2003. Small molecules that reactivate mutant p53. Eur J Cancer 39: 1828-34.CrossRefPubMedGoogle Scholar
  18. Bykov, V.J. and K.G. Wiman. 2003. Novel cancer therapy by reactivation of the p53 apoptosis pathway. Ann Med 35: 458-65.CrossRefPubMedGoogle Scholar
  19. Bykov, V.J., N. Zache, H. Stridh, J. Westman, J. Bergman, G. Selivanova, and K.G. Wiman. 2005. PRIMA-1METsynergizes with cisplatin to induce tumor cell apoptosis. Oncogene, in press.Google Scholar
  20. Caron de Fromentel, C., N. Gruel, C. Venot, L. Debussche, E. Conseiller, C. Dureuil, J.L. Teillaud, B. Tocque, and L. Bracco. 1999. Restoration of transcriptional activity of p53 mutants in human tumour cells by intracellular expression of anti-p53 single chain Fv fragments. Oncogene 18: 551-7.CrossRefPubMedGoogle Scholar
  21. Chipuk, J.E., U. Maurer, D.R. Green, and M. Schuler. 2003. Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4: 371-81.CrossRefPubMedGoogle Scholar
  22. Cho, Y., S. Gorina, P.D. Jeffrey, and N.P. Pavletich. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265: 346-55.CrossRefPubMedGoogle Scholar
  23. Di Como, C.J.,C. Gaiddon, and C. Prives. 1999. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19: 1438-49.PubMedGoogle Scholar
  24. DiTullio, R.A., Jr., T.A. Mochan, M. Venere, J. Bartkova, M. Sehested, J. Bartek, and T.D. Halazonetis. 2002. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol 4: 998-1002.CrossRefPubMedGoogle Scholar
  25. Dornan, D., I. Wertz, H. Shimizu, D. Arnott, G.D. Frantz, P. Dowd, K. O'Rourke, H. Koeppen, and V.M. Dixit. 2004. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429: 86-92.CrossRefPubMedGoogle Scholar
  26. Dumaz, N. and D.W. Meek. 1999. Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. Embo J 18: 7002-10.CrossRefPubMedGoogle Scholar
  27. Elmore, L.W., C.W. Rehder, X. Di, P.A. McChesney, C.K. Jackson-Cook, D.A. Gewirtz, and S.E. Holt. 2002. Adriamycin-induced senescence in breast tumor cells involves functional p53 and telomere dysfunction. J Biol Chem 277: 35509-15.CrossRefPubMedGoogle Scholar
  28. Foster, B.A., H.A. Coffey, M.J. Morin, and F. Rastinejad. 1999. Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507-10.CrossRefPubMedGoogle Scholar
  29. Frazier, M.W., X. He, J. Wang, Z. Gu, J.L. Cleveland, and G.P. Zambetti. 1998. Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol Cell Biol 18: 3735-43.PubMedGoogle Scholar
  30. Friedler, A., L.O. Hansson, D.B. Veprintsev, S.M. Freund, T.M. Rippin, P.V. Nikolova, M.R. Proctor, S. Rudiger, and A.R. Fersht. 2002. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci U S A 99: 937-42.CrossRefPubMedGoogle Scholar
  31. Geisler, S., A.L. Borresen-Dale, H. Johnsen, T. Aas, J. Geisler, L.A. Akslen, G. Anker, and P.E. Lonning. 2003. TP53 gene mutations predict the response to neoadjuvant treatment with 5-fluorouracil and mitomycin in locally advanced breast cancer. Clin Cancer Res 9: 5582-8.PubMedGoogle Scholar
  32. Geisler, S., P.E. Lonning, T. Aas, H. Johnsen, O. Fluge, D.F. Haugen, J.R. Lillehaug, L.A. Akslen, and A.L. Borresen-Dale. 2001. Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res 61: 2505-12.PubMedGoogle Scholar
  33. Gorina, S. and N.P. Pavletich. 1996. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274: 1001-5.CrossRefPubMedGoogle Scholar
  34. Gu, W. and R.G. Roeder. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595-606.CrossRefPubMedGoogle Scholar
  35. Halazonetis, T.D., L.J. Davis, and A.N. Kandil. 1993. Wild-type p53 adopts a 'mutant'-like conformation when bound to DNA. Embo J 12: 1021-8.PubMedGoogle Scholar
  36. Hansen, S., T.R. Hupp, and D.P. Lane. 1996. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. CRC Cell Transformation Group. J Biol Chem 271: 3917-24.CrossRefPubMedGoogle Scholar
  37. Hupp, T.R., D.W. Meek, C.A. Midgley, and D.P. Lane. 1993. Activation of the cryptic DNA binding function of mutant forms of p53. Nucleic Acids Res 21: 3167-74.CrossRefPubMedGoogle Scholar
  38. Hupp, T.R., A. Sparks, and D.P. Lane. 1995. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83: 237-45.CrossRefPubMedGoogle Scholar
  39. Issaeva, N., A. Friedler, P. Bozko, K.G. Wiman, A.R. Fersht, and G. Selivanova. 2003. Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci U S A 100: 13303-7.CrossRefPubMedGoogle Scholar
  40. Ito, A., C.H. Lai, X. Zhao, S. Saito, M.H. Hamilton, E. Appella, and T.P. Yao. 2001. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. Embo J 20: 1331-40.CrossRefPubMedGoogle Scholar
  41. Kim, A.L., A.J. Raffo, P.W. Brandt-Rauf, M.R. Pincus, R. Monaco, P. Abarzua, and R.L. Fine. 1999. Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J Biol Chem 274: 34924-31.CrossRefPubMedGoogle Scholar
  42. Lai, S.L., R.P. Perng, and J. Hwang. 2000. p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells. J Biomed Sci 7: 64-70.CrossRefPubMedGoogle Scholar
  43. Lambert, P.F., F. Kashanchi, M.F. Radonovich, R. Shiekhattar, and J.N. Brady. 1998. Phosphorylation of p53 Serine 15 Increases Interaction with CBP. J. Biol. Chem. 273: 33048-33053.CrossRefPubMedGoogle Scholar
  44. Lane, D. 2004. p53 from pathway to therapy. Carcinogenesis 25: 1077-1081.CrossRefPubMedGoogle Scholar
  45. Lane, D.P. and T.R. Hupp. 2003. Drug discovery and p53. Drug Discov Today 8: 347-55.CrossRefPubMedGoogle Scholar
  46. Leng, R.P., Y. Lin, W. Ma, H. Wu, B. Lemmers, S. Chung, J.M. Parant, G. Lozano, R. Hakem, and S. Benchimol. 2003. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112: 779-91.CrossRefPubMedGoogle Scholar
  47. Lindstrom, M.S., U. Klangby, R. Inoue, P. Pisa, K.G. Wiman, and C.E. Asker. 2000. Immunolocalization of human p14(ARF) to the granular component of the interphase nucleolus. Exp Cell Res 256: 400-10.CrossRefPubMedGoogle Scholar
  48. Lindstrom, M.S. and K.G. Wiman. 2003. Myc and E2F1 induce p53 through p14ARF-independent mechanisms in human fibroblasts. Oncogene 22: 4993-5005.CrossRefPubMedGoogle Scholar
  49. Luu, Y., J. Bush, K.J. Cheung, Jr., and G. Li. 2002. The p53 stabilizing compound CP-31398 induces apoptosis by activating the intrinsic Bax/mitochondrial/caspase-9 pathway. Exp Cell Res 276: 214-22.CrossRefPubMedGoogle Scholar
  50. Marin, M.C. and W.G. Kaelin, Jr. 2000. p63 and p73: old members of a new family. Biochim Biophys Acta 1470: M93-M100.PubMedGoogle Scholar
  51. Maurici, D., P. Monti, P. Campomenosi, S. North, T. Frebourg, G. Fronza, and P. Hainaut. 2001. Amifostine (WR2721) restores transcriptional activity of specific p53 mutant proteins in a yeast functional assay. Oncogene 20: 3533-40.CrossRefPubMedGoogle Scholar
  52. Melnikova, V.O., A.B. Santamaria, S.V. Bolshakov, and H.N. Ananthaswamy. 2003. Mutant p53 is constitutively phosphorylated at Serine 15 in UV-induced mouse skin tumors: involvement of ERK1/2 MAP kinase. Oncogene 22: 5958-66.CrossRefPubMedGoogle Scholar
  53. Milner, J. and E.A. Medcalf. 1991. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65: 765-74.CrossRefPubMedGoogle Scholar
  54. Minamoto, T., T. Buschmann, H. Habelhah, E. Matusevich, H. Tahara, A.L. Boerresen-Dale, C. Harris, D. Sidransky, and Z. Ronai. 2001. Distinct pattern of p53 phosphorylation in human tumors. Oncogene 20: 3341-7.CrossRefPubMedGoogle Scholar
  55. Monti, P., P. Campomenosi, Y. Ciribilli, R. Iannone, A. Aprile, A. Inga, M. Tada, P. Menichini, A. Abbondandolo, and G. Fronza. 2003. Characterization of the p53 mutants ability to inhibit p73 beta transactivation using a yeast-based functional assay. Oncogene 22: 5252-60.CrossRefPubMedGoogle Scholar
  56. Neckers, L. 2002. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8: S55-61.CrossRefPubMedGoogle Scholar
  57. Niewolik, D., B. Vojtesek, and J. Kovarik. 1995. p53 derived from human tumour cell lines and containing distinct point mutations can be activated to bind its consensus target sequence. Oncogene 10: 881-90.PubMedGoogle Scholar
  58. North, S., O. Pluquet, D. Maurici, F. El-Ghissassi, and P. Hainaut. 2002. Restoration of wild-type conformation and activity of a temperature-sensitive mutant of p53 (p53(V272M)) by the cytoprotective aminothiol WR1065 in the esophageal cancer cell line TE-1. Mol Carcinog 33: 181-8.CrossRefPubMedGoogle Scholar
  59. O'Connor, P.M., J. Jackman, I. Bae, T.G. Myers, S. Fan, M. Mutoh, D.A. Scudiero, A. Monks, E.A. Sausville, J.N. Weinstein, S. Friend, A.J. Fornace, Jr., and K.W. Kohn. 1997. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57: 4285-300.PubMedGoogle Scholar
  60. Okamoto, K., H. Li, M.R. Jensen, T. Zhang, Y. Taya, S.S. Thorgeirsson, and C. Prives. 2002. Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell 9: 761-71.CrossRefPubMedGoogle Scholar
  61. Peng, Y., C. Li, L. Chen, S. Sebti, and J. Chen. 2003. Rescue of mutant p53 transcription function by ellipticine. Oncogene 22: 4478-87.CrossRefPubMedGoogle Scholar
  62. Pluquet, O., S. North, A. Bhoumik, K. Dimas, Z. Ronai, and P. Hainaut. 2003a. The cytoprotective aminothiol WR1065 activates p53 through a non-genotoxic signaling pathway involving c-Jun N-terminal kinase. J Biol Chem 278: 11879-87.CrossRefPubMedGoogle Scholar
  63. Pluquet, O., S. North, M.J. Richard, and P. Hainaut. 2003b. Activation of p53 by the cytoprotective aminothiol WR1065: DNA-damage-independent pathway and redox-dependent modulation of p53 DNA-binding activity. Biochem Pharmacol 65: 1129-37.CrossRefPubMedGoogle Scholar
  64. Powers, J.T., S. Hong, C.N. Mayhew, P.M. Rogers, E.S. Knudsen, and D.G. Johnson. 2004. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2: 203-14.PubMedGoogle Scholar
  65. Pugacheva, E.N., A.V. Ivanov, J.E. Kravchenko, B.P. Kopnin, A.J. Levine, and P.M. Chumakov. 2002. Novel gain of function activity of p53 mutants: activation of the dUTPase gene expression leading to resistance to 5-fluorouracil. Oncogene 21: 4595-600.CrossRefPubMedGoogle Scholar
  66. Rahko, E., G. Blanco, Y. Soini, R. Bloigu, and A. Jukkola. 2003. A mutant TP53 gene status is associated with a poor prognosis and anthracycline-resistance in breast cancer patients. Eur J Cancer 39: 447-53.CrossRefPubMedGoogle Scholar
  67. Rippin, T.M., V.J. Bykov, S.M. Freund, G. Selivanova, K.G. Wiman, and A.R. Fersht. 2002. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 21: 2119-29.CrossRefPubMedGoogle Scholar
  68. Ryan, K.M., A.C. Phillips, and K.H. Vousden. 2001. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13: 332-7.CrossRefPubMedGoogle Scholar
  69. Samuels-Lev, Y., D.J. O'Connor, D. Bergamaschi, G. Trigiante, J.K. Hsieh, S. Zhong, I. Campargue, L. Naumovski, T. Crook, and X. Lu. 2001. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell 8: 781-94.CrossRefPubMedGoogle Scholar
  70. Schmitt, C.A. 2003. Senescence, apoptosis and therapy--cutting the lifelines of cancer. Nat Rev Cancer 3: 286-95.CrossRefPubMedGoogle Scholar
  71. Schmitt, C.A., J.S. Fridman, M. Yang, E. Baranov, R.M. Hoffman, and S.W. Lowe. 2002a. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1: 289-98.CrossRefPubMedGoogle Scholar
  72. Schmitt, C.A., J.S. Fridman, M. Yang, S. Lee, E. Baranov, R.M. Hoffman, and S.W. Lowe. 2002b. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109: 335-46.CrossRefPubMedGoogle Scholar
  73. Schmitt, C.A., M.E. McCurrach, E. de Stanchina, R.R. Wallace-Brodeur, and S.W. Lowe. 1999. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13: 2670-7.CrossRefPubMedGoogle Scholar
  74. Selivanova, G. 2001. Mutant p53: the loaded gun. Curr Opin Investig Drugs 2: 1136-41.PubMedGoogle Scholar
  75. Selivanova, G., V. Iotsova, I. Okan, M. Fritsche, M. Strom, B. Groner, R.C. Grafstrom, and K.G. Wiman. 1997. Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med 3: 632-8.CrossRefPubMedGoogle Scholar
  76. Selivanova, G., T. Kawasaki, L. Ryabchenko, and K.G. Wiman. 1998. Reactivation of mutant p53: a new strategy for cancer therapy. Semin Cancer Biol 8: 369-78.CrossRefPubMedGoogle Scholar
  77. Selivanova, G., L. Ryabchenko, E. Jansson, V. Iotsova, and K.G. Wiman. 1999. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol Cell Biol 19: 3395-402.PubMedGoogle Scholar
  78. Seoane, J., H.V. Le, and J. Massague. 2002. Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419: 729-34.CrossRefPubMedGoogle Scholar
  79. Sherr, C.J. 2000. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60: 3689-95.PubMedGoogle Scholar
  80. Shi, L.M., Y. Fan, T.G. Myers, P.M. O'Connor, K.D. Paull, S.H. Friend, and J.N. Weinstein. 1998. Mining the NCI anticancer drug discovery databases: genetic function approximation for the QSAR study of anticancer ellipticine analogues. J Chem Inf Comput Sci 38: 189-99.PubMedGoogle Scholar
  81. Snyder, E.L., B.R. Meade, C.C. Saenz, and S.F. Dowdy. 2004. Treatment of Terminal Peritoneal Carcinomatosis by a Transducible p53-Activating Peptide. PLoS Biol 2: E36.CrossRefPubMedGoogle Scholar
  82. Soussi, T. and C. Beroud. 2001. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1: 233-40.CrossRefPubMedGoogle Scholar
  83. Strano, S. and G. Blandino. 2003. p73-mediated chemosensitivity: a preferential target of oncogenic mutant p53. Cell Cycle 2: 348-9.PubMedGoogle Scholar
  84. Strano, S., G. Fontemaggi, A. Costanzo, M.G. Rizzo, O. Monti, A. Baccarini, G. Del Sal, M. Levrero, A. Sacchi, M. Oren, and G. Blandino. 2002. Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277: 18817-26.CrossRefPubMedGoogle Scholar
  85. Tacka, K.A., J.C. Dabrowiak, J. Goodisman, and A.K. Souid. 2002. Kinetic analysis of the reactions of 4-hydroperoxycyclophosphamide and acrolein with glutathione, mesna, and WR-1065. Drug Metab Dispos 30: 875-82.CrossRefPubMedGoogle Scholar
  86. Takekawa, M., M. Adachi, A. Nakahata, I. Nakayama, F. Itoh, H. Tsukuda, Y. Taya, and K. Imai. 2000. p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. Embo J 19: 6517-26.CrossRefPubMedGoogle Scholar
  87. Takimoto, R., W. Wang, D.T. Dicker, F. Rastinejad, J. Lyssikatos, and W.S. el-Deiry. 2002. The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther 1: 47-55.PubMedGoogle Scholar
  88. Tsang, W.P., S.P. Chau, K.P. Fung, S.K. Kong, and T.T. Kwok. 2003. Modulation of multidrug resistance-associated protein 1 (MRP1) by p53 mutant in Saos-2 cells. Cancer Chemother Pharmacol 51: 161-6.PubMedGoogle Scholar
  89. Wang, W., R. Takimoto, F. Rastinejad, and W.S. El-Deiry. 2003. Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol 23: 2171-81.CrossRefPubMedGoogle Scholar
  90. Wang, Y., A. Helland, R. Holm, H. Skomedal, V.M. Abeler, H.E. Danielsen, C.G. Trope, A.L. Borresen-Dale, and G.B. Kristensen. 2004. TP53 mutations in early-stage ovarian carcinoma, relation to long-term survival. Br J Cancer 90: 678-85.CrossRefPubMedGoogle Scholar
  91. Weinstein, J.N., T.G. Myers, P.M. O'Connor, S.H. Friend, A.J. Fornace, Jr., K.W. Kohn, T. Fojo, S.E. Bates, L.V. Rubinstein, N.L. Anderson, J.K. Buolamwini, W.W. van Osdol, A.P. Monks, D.A. Scudiero, E.A. Sausville, D.W. Zaharevitz, B. Bunow, V.N. Viswanadhan, G.S. Johnson, R.E. Wittes, and K.D. Paull. 1997. An information-intensive approach to the molecular pharmacology of cancer. Science 275: 343-9.CrossRefPubMedGoogle Scholar
  92. Wischhusen, J., U. Naumann, H. Ohgaki, F. Rastinejad, and M. Weller. 2003. CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene 22: 8233-45.CrossRefPubMedGoogle Scholar
  93. Xu, Y. 2003. Regulation of p53 responses by post-translational modifications. Cell Death Differ 10: 400-3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Galina Selivanova
    • 1
  • Vladimir J. N. Bykov
    • 1
  • Klas G. Wiman
    • 1
  1. 1.Department of Oncology-PathologyCancer Center Karolinska, Karolinska InstituteSweden

Personalised recommendations