Skip to main content

P53 Links Tumor Development to Cancer Therapy

  • Chapter

Anti-cancer therapy operates on the assumption that the genetic pathways disrupted during tumorigenesis are distinct from those that mediate drug sensitivity. The main objective of this therapy is to present tumor cells with obstacles unrelated to the process of cellular transformation or to exploit vulnerabilities created by tumor development, such as uncontrolled DNA synthesis, checkpoint abnormalities, or an addiction to an oncogenic signal. Cytotoxic therapies, for example, rely on the introduction of DNA damage or the inhibition of chromosome segregation. These lesions, when introduced at high levels, elicit a DNA damage response presumably distinct from any encountered during the early stages of tumor development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. M., Harris, A. W., Pinkert, C. A., Corcoran, L. M., Alexander, W. S., Cory, S., Palmiter, R. D., and Brinster, R. L. (1985). The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318, 533-538.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, J., Urist, M., and Prives, C. (2003). Questioning the role of checkpoint kinase 2 in the p53 DNA damage response. J Biol Chem 278, 20480-20489.

    Article  CAS  PubMed  Google Scholar 

  • Barlow, C., Hirotsune, S., Paylor, R., Liyanage, M., Eckhaus, M., Collins, F., Shiloh, Y., Crawley, J. N., Ried, T., Tagle, D., and Wynshaw-Boris, A. (1996). Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159-171.

    Article  CAS  PubMed  Google Scholar 

  • Bullock, A. N., and Fersht, A. R. (2001). Rescuing the function of mutant p53. Nat Rev Cancer 1, 68-76.

    Article  CAS  PubMed  Google Scholar 

  • Bunz, F., Hwang, P. M., Torrance, C., Waldman, T., Zhang, Y., Dillehay, L., Williams, J., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104, 263-269.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., and Wyllie, A. H. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849-852.

    Article  CAS  PubMed  Google Scholar 

  • de Stanchina, E., McCurrach, M. E., Zindy, F., Shieh, S. Y., Ferbeyre, G., Samuelson, A. V., Prives, C., Roussel, M. F., Sherr, C. J., and Lowe, S. W. (1998). E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12, 2434-2442.

    Article  PubMed  Google Scholar 

  • Debbas, M., and White, E. (1993). Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 7, 546-554.

    Article  CAS  PubMed  Google Scholar 

  • Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215-221.

    Article  CAS  PubMed  Google Scholar 

  • Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J., and Cleveland, J. L. (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13, 2658-2669.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, C. G., Tolis, C., and Giaccone, G. (1999). p53 and chemosensitivity. Ann Oncol 10, 1011-1021.

    Article  CAS  PubMed  Google Scholar 

  • Fridman, J. S., Hernando, E., Hemann, M. T., de Stanchina, E., Cordon-Cardo, C., and Lowe, S. W. (2003). Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res 63, 5703-5706.

    CAS  PubMed  Google Scholar 

  • Greenblatt, M. S., Bennett, W. P., Hollstein, M., and Harris, C. C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54, 4855-4878.

    CAS  PubMed  Google Scholar 

  • Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D. D., and Kirn, D. H. (1997). ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3, 639-645.

    Article  CAS  PubMed  Google Scholar 

  • Hemann, M. T., Fridman, J. S., Zilfou, J. T., Hernando, E., Paddison, P. J., Cordon-Cardo, C., Hannon, G. J., and Lowe, S. W. (2003). An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nat Genet 33, 396-400.

    Article  CAS  PubMed  Google Scholar 

  • Hemann MT, Zilfou JT, Zhao Z, Burgess DJ, Hannon GJ, Lowe SW (2004). Suppression of tumorigenesis by the p53 target PUMA. PNAS 101, 9333-9338.

    Article  CAS  PubMed  Google Scholar 

  • Hermeking, H., and Eick, D. (1994). Mediation of c-Myc-induced apoptosis by p53. Science 265, 2091-2093.

    Article  CAS  PubMed  Google Scholar 

  • Herr, I., and Debatin, K. M. (2001). Cellular stress response and apoptosis in cancer therapy. Blood 98, 2603-2614.

    Article  CAS  PubMed  Google Scholar 

  • Horowitz, J. (1999). Adenovirus-mediated p53 gene therapy: overview of preclinical studies and potential clinical applications. Curr Opin Mol Ther 1, 500-509.

    CAS  PubMed  Google Scholar 

  • Hussain, S. P., and Harris, C. C. (1998). Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res 58, 4023-4037.

    CAS  PubMed  Google Scholar 

  • Iliakis, G., Wang, Y., Guan, J., and Wang, H. (2003). DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22, 5834-5847.

    Article  CAS  PubMed  Google Scholar 

  • Jallepalli, P. V., Lengauer, C., Vogelstein, B., and Bunz, F. (2003). The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 278, 20475-20479.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, R. W., Ruefli, A. A., and Lowe, S. W. (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153-164.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, R. W., Ruefli, A. A., and Smyth, M. J. (2000). Multiple physiological functions for multidrug transporter P-glycoprotein? Trends Biochem Sci 25, 1-6.

    Article  CAS  PubMed  Google Scholar 

  • Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., Grosveld, G., and Sherr, C. J. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649-659.

    Article  CAS  PubMed  Google Scholar 

  • Kemp, C. J., Donehower, L. A., Bradley, A., and Balmain, A. (1993). Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813-822.

    Article  CAS  PubMed  Google Scholar 

  • Komarova, E. A., Christov, K., Faerman, A. I., and Gudkov, A. V. (2000). Different impact of p53 and p21 on the radiation response of mouse tissues. Oncogene 19, 3791-3798.

    Article  CAS  PubMed  Google Scholar 

  • Liao, M. J., Yin, C., Barlow, C., Wynshaw-Boris, A., and van Dyke, T. (1999). Atm is dispensable for p53 apoptosis and tumor suppression triggered by cell cycle dysfunction. Mol Cell Biol 19, 3095-3102.

    CAS  PubMed  Google Scholar 

  • Liu, G., Parant, J. M., Lang, G., Chau, P., Chavez-Reyes, A., El-Naggar, A. K., Multani, A., Chang, S., and Lozano, G. (2004). Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36, 63-68.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, S. W., and Ruley, H. E. (1993). Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7, 535-545.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, D. E. (1993a). p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957-967.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., and Jacks, T. (1993b). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847-849.

    Article  CAS  PubMed  Google Scholar 

  • Lozano, G., and Liu, G. (1998). Mouse models dissect the role of p53 in cancer and development. Semin Cancer Biol 8, 337-344.

    Article  CAS  PubMed  Google Scholar 

  • Lu, X., Magrane, G., Yin, C., Louis, D. N., Gray, J., and Van Dyke, T. (2001). Selective inactivation of p53 facilitates mouse epithelial tumor progression without chromosomal instability. Mol Cell Biol 21, 6017-6030.

    Article  CAS  PubMed  Google Scholar 

  • Nigro, J. M., Baker, S. J., Preisinger, A. C., Jessup, J. M., Hostetter, R., Cleary, K., Bigner, S. H., Davidson, N., Baylin, S., Devilee, P., and et al. (1989). Mutations in the p53 gene occur in diverse human tumour types. Nature 342, 705-708.

    Article  CAS  PubMed  Google Scholar 

  • Prives, C. (1998). Signaling to p53: breaking the MDM2-p53 circuit. Cell 95, 5-8.

    Article  CAS  PubMed  Google Scholar 

  • Rao, L., Debbas, M., Sabbatini, P., Hockenbery, D., Korsmeyer, S., and White, E. (1992). The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci U S A 89, 7742-7746.

    Article  CAS  PubMed  Google Scholar 

  • Rogoff, H. A., Pickering, M. T., Debatis, M. E., Jones, S., and Kowalik, T. F. (2002). E2F1 induces phosphorylation of p53 that is coincident with p53 accumulation and apoptosis. Mol Cell Biol 22, 5308-5318.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, C. A., Fridman, J. S., Yang, M., Baranov, E., Hoffman, R. M., and Lowe, S. W. (2002a). Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1, 289-298.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, C. A., Fridman, J. S., Yang, M., Lee, S., Baranov, E., Hoffman, R. M., and Lowe, S. W. (2002b). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335-346.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, C. A., and Lowe, S. W. (1999). Apoptosis and therapy. J Pathol 187, 127-137.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R., and Lowe, S. W. (1999). INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13, 2670-2677.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, D., and Rotter, V. (1998). p53-dependent cell cycle control: response to genotoxic stress. Semin Cancer Biol 8, 325-336.

    Article  CAS  PubMed  Google Scholar 

  • Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602.

    Article  CAS  PubMed  Google Scholar 

  • Soussi, T., and Beroud, C. (2001). Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1, 233-240.

    Article  CAS  PubMed  Google Scholar 

  • Stott, F. J., Bates, S., James, M. C., McConnell, B. B., Starborg, M., Brookes, S., Palmero, I., Ryan, K., Hara, E., Vousden, K. H., and Peters, G. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. Embo J 17, 5001-5014.

    Article  CAS  PubMed  Google Scholar 

  • Symonds, H., Krall, L., Remington, L., Saenz-Robles, M., Lowe, S., Jacks, T., and Van Dyke, T. (1994). p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78, 703-711.

    Article  CAS  PubMed  Google Scholar 

  • Tolbert, D., Lu, X., Yin, C., Tantama, M., and Van Dyke, T. (2002). p19(ARF) is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo. Mol Cell Biol 22, 370-377.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, K. Y., MacPherson, D., Rubinson, D. A., Crowley, D., and Jacks, T. (2002). ARF is not required for apoptosis in Rb mutant mouse embryos. Curr Biol 12, 159-163.

    Article  CAS  PubMed  Google Scholar 

  • Vafa, O., Wade, M., Kern, S., Beeche, M., Pandita, T. K., Hampton, G. M., and Wahl, G. M. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9, 1031-1044.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein, B., Lane, D., and Levine, A. J. (2000). Surfing the p53 network. Nature 408, 307-310.

    Article  CAS  PubMed  Google Scholar 

  • Volm, M. (1998). Multidrug resistance and its reversal. Anticancer Res 18, 2905-2917.

    CAS  PubMed  Google Scholar 

  • Vousden, K. H., and Lu, X. (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2, 594-604.

    Article  CAS  PubMed  Google Scholar 

  • Wallace-Brodeur, R. R., and Lowe, S. W. (1999). Clinical implications of p53 mutations. Cell Mol Life Sci 55, 64-75.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Yang, E. M., Brugarolas, J., Jacks, T., and Baltimore, D. (1998). Involvement of p53 and p21 in cellular defects and tumorigenesis in Atm-/- mice. Mol Cell Biol 18, 4385-4390.

    CAS  PubMed  Google Scholar 

  • Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., and Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345-347.

    Article  CAS  PubMed  Google Scholar 

  • Zindy, F., Eischen, C. M., Randle, D. H., Kamijo, T., Cleveland, J. L., Sherr, C. J., and Roussel, M. F. (1998). Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12, 2424-2433.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hemann, M.T., Lowe, S.W. (2007). P53 Links Tumor Development to Cancer Therapy. In: Hainaut, P., Wiman, K.G. (eds) 25 Years of p53 Research. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2922-6_15

Download citation

Publish with us

Policies and ethics