Analysis of p53 Gene Alterations in Cancer: A Critical View

  • Thierry Soussi

“Guardian of the genome” (Lane, 1992), “Death star” (Vousden, 2000), “Good and bad cop” (Sharpless and DePinho, 2002), “An acrobat in tumorigenesis” (Moll and Schramm, 1998), are just a few of the names that have been attributed to the p53 gene over recent years. However, the cameras (and funding) were certainly not present at the time of the discovery of p53 in 1979 (Crawford, 1983). It was only when the first alterations of the p53 gene in human cancers were discovered 10 years later, in 1989, that p53 started to become really popular, with the title of “molecule of the year” attributed by Science, in 1993 (Harris, 1993). This title was certainly justified, as the observation that more than one half of human cancers expressed a mutant p53 raised extensive clinical possibilities both for diagnosis and treatment.


Cervical Cancer TP53 Mutation Inflammatory Breast Cancer Critical View Adrenal Cortical Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aas, T., Borresen, A. L., Geisler, S., Smithsorensen, B., Johnsen, H., Varhaug, J. E., Akslen, L. A., and Lonning, P. E. (1996). Specific p53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Med 2, 811-814.PubMedGoogle Scholar
  2. Aguilar, F., Harris, C. C., Sun, T., Hollstein, M., and Cerutti, P. (1994). Geographic variation of p53 mutational profile in nonmalignant human liver. Science 264, 1317-1319.PubMedGoogle Scholar
  3. Aguilar, F., Hussain, S. P., and Cerutti, P. (1993). Aflatoxin-B(1) induces the transversion of G->T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci USA 90, 8586-8590.PubMedGoogle Scholar
  4. Ahn, J., Urist, M., and Prives, C. (2003). Questioning the role of checkpoint kinase 2 in the p53 DNA damage response. J Biol Chem 278, 20480-20489.PubMedGoogle Scholar
  5. Ahrendt, S. A., Halachmi, S., Chow, J. T., Wu, L., Halachmi, N., Yang, S. C., Wehage, S., Jen, J., and Sidransky, D. (1999). Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc Natl Acad Sci U S A 96, 7382-7387.PubMedGoogle Scholar
  6. Angelopoulou, K., and Diamandis, E. P. (1997). Detection of the TP53 tumour suppressor gene product and p53 auto-antibodies in the ascites of women with ovarian cancer. Eur J Cancer 33, 115-121.PubMedGoogle Scholar
  7. Angelopoulou, K., Diamandis, E. P., Sutherland, D. J. A., Kellen, J. A., and Bunting, P. S. (1994). Prevalence of serum antibodies against the p53 tumor suppressor gene protein in various cancers. Int J Cancer 58, 480-487.PubMedGoogle Scholar
  8. Attardi, L. D., and DePinho, R. A. (2004). Conquering the complexity of p53. Nat Genet 36, 7-8.PubMedGoogle Scholar
  9. Bargonetti, J., Manfredi, J. J., Chen, X. B., Marshak, D. R., and Prives, C. (1993). A proteolytic fragment from the central region of p53 has marked Sequence-Specific DNA-Binding activity when generated from Wild-Type but not from oncogenic mutant p53-Protein. Gene Develop 7, 2565-2574.Google Scholar
  10. Beckman, G., Birgander, R., Sjalander, A., Saha, N., Holmberg, P. A., Kivela, A., and Beckman, L. (1994). Is p53 polymorphism maintained by natural selection? Hum Hered 44, 266-270.PubMedGoogle Scholar
  11. Bell, D. W., Varley, J. M., Szydlo, T. E., Kang, D. H., Wahrer, D. C., Shannon, K. E., Lubratovich, M., Verselis, S. J., Isselbacher, K. J., Fraumeni, J. F., et al. (1999). Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528-2531.PubMedGoogle Scholar
  12. Bergamaschi, D., Gasco, M., Hiller, L., Sullivan, A., Syed, N., Trigiante, G., Yulug, I., Merlano, M., Numico, G., Comino, A., et al. (2003). p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3, 387-402.PubMedGoogle Scholar
  13. Béroud, C., Collod-Béroud, G., Boileau, C., Soussi, T., and Junien, C. (2000). UMD (Universal Mutation Database): A generic software to build and analyze locus-specific databases. Hum Mutat 15, 86-94.PubMedGoogle Scholar
  14. Blandino, G., Levine, A. J., and Oren, M. (1999). Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18, 477-485.PubMedGoogle Scholar
  15. Bourhis, J., Lubin, R., Roche, B., Koscielny, S., Bosq, J., Dubois, I., Talbot, M., Marandas, P., Schwaab, G., Wibault, P., et al. (1996). Analysis of p53 serum antibodies in patients with head and neck squamous cell carcinoma. J Nat Cancer Inst 88, 1228-1233.PubMedGoogle Scholar
  16. Brash, D. E., and Ponten, J. (1998). Skin precancer. Cancer Surv 32, 69-113.Google Scholar
  17. Brash, D. E., Rudolph, J. A., Simon, J. A., Lin, A., Mckenna, G. J., Baden, H. P., Halperin, A. J., and Ponten, J. (1991). A Role for sunlight in skin cancer - UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88, 10124-10128.PubMedGoogle Scholar
  18. Bray, S. E., Schorl, C., and Hall, P. A. (1998). The challenge of p53: Linking biochemistry, biology, and patient management. Stem Cells 16, 248-260.PubMedGoogle Scholar
  19. Breton, J., Sichel, F., Abbas, A., Marnay, J., Arsene, D., and Lechevrel, M. (2003). Simultaneous use of DGGE and DHPLC to screen TP53 mutations in cancers of the esophagus and cardia from a European high incidence area (Lower Normandy, France). Mutagenesis 18, 299-306.PubMedGoogle Scholar
  20. Cabelguenne, A., Blons, H., de Waziers, I., Carnot, F., Houllier, A. M., Soussi, T., Brasnu, D., Beaune, P., Laccourreye, O., and Laurent-Puig, P. (2000). p53 alterations predict tumor response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma: a prospective series. J Clin Oncol 18, 1465-1473.PubMedGoogle Scholar
  21. Campomenosi, P., Monti, P., Aprile, A., Abbondandolo, A., Frebourg, T., Gold, B., Crook, T., Inga, A., Resnick, M. A., Iggo, R., and Fronza, G. (2001). p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 20, 3573-3579.PubMedGoogle Scholar
  22. Caron de Fromentel, C., May-Levin, F., Mouriesse, H., Lemerle, J., Chandrasekaran, K., and May, P. (1987). Presence of circulating antibodies against cellular protein p53 in a notable proportion of children with B-cell lymphoma. Int J Cancer 39, 185-189.PubMedGoogle Scholar
  23. Casey, G., Lopez, M. E., Ramos, J. C., Plummer, S. J., Arboleda, M. J., Shaughnessy, M., Karlan, B., and Slamon, D. J. (1996). DNA sequence analysis of exons 2 through 11 and immunohistochemical staining are required to detect all known p53 alterations in human malignancies. Oncogene 13, 1971-1981.PubMedGoogle Scholar
  24. Chakrabarti, S., Price, B. D., Tetradis, S., Fox, E. A., Zhang, Y., Maulik, G., and Makrigiorgos, G. M. (2000). Highly selective isolation of unknown mutations in diverse DNA fragments: toward new multiplex screening in cancer. Cancer Res 60, 3732-3737.PubMedGoogle Scholar
  25. Chehab, N. H., Malikzay, A., Appel, M., and Halazonetis, T. D. (2000). Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14, 278-288.PubMedGoogle Scholar
  26. Chin, L., Merlino, G., and DePinho, R. A. (1998). Malignant melanoma: modern black plague and genetic black box. Genes Dev 12, 3467-3481.PubMedGoogle Scholar
  27. Cottu, P. H., Muzeau, F., Estreicher, A., Flejou, J. F., Iggo, R., Thomas, G., and Hamelin, R. (1996). Inverse correlation between RER(+) status and p53 mutation in colorectal cancer cell lines. Oncogene 13, 2727-2730.PubMedGoogle Scholar
  28. Crawford, L. (1983). The 53,000-dalton cellular protein and its role in transformation. Int Rev Exp Path 25, 1-50.PubMedGoogle Scholar
  29. Crawford, L. V., Pim, D. C., and Bulbrook, R. D. (1982). Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer. Int J Cancer 30, 403-408.PubMedGoogle Scholar
  30. Crook, T., Wrede, D., Tidy, J. A., Mason, W. P., Evans, D. J., and Vousden, K. H. (1992). Clonal p53 mutation in primary cervical cancer - association with human-papillomavirus-negative tumours. Lancet 339, 1070-1073.PubMedGoogle Scholar
  31. De Leo, A. B., Jay, G., Appella, E., Dubois, G. C., Law, L. W., and Old, L. J. (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76, 2420-2424.Google Scholar
  32. Denissenko, M. F., Pao, A., Tang, M. S., and Pfeifer, G. P. (1996). Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274, 430-432.PubMedGoogle Scholar
  33. DiComo, C. J., Gaiddon, C., and Prives, C. (1999). p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19, 1438-1449.Google Scholar
  34. DiGiammarino, E. L., Lee, A. S., Cadwell, C., Zhang, W., Bothner, B., Ribeiro, R. C., Zambetti, G., and Kriwacki, R. W. (2002). A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9, 12-16.PubMedGoogle Scholar
  35. Dittmer, D., Pati, S., Zambetti, G., Chu, S., Teresky, A. K., Moore, M., Finlay, C., and Levine, A. J. (1993). Gain of function mutations in p53. Nature genetics 4, 42-46.PubMedGoogle Scholar
  36. Dowell, S. P., Wilson, P. O. G., Derias, N. W., Lane, D. P., and Hall, P. A. (1994). Clinical utility of the immunocytochemical detection of p53 protein in cytological specimens. Cancer Res 54, 2914-2918.PubMedGoogle Scholar
  37. Dumont, P., Leu, J. I., Della Pietra, A. C., 3rd, George, D. L., and Murphy, M. (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33, 357-365.PubMedGoogle Scholar
  38. Eliyahu, D., Michalovitz, D., Eliyahu, S., Pinhasikimhi, O., and Oren, M. (1990). p53 -Oncogene or anti-oncogene. Oncogenes in Cancer Diagnosis 39, 125-134.Google Scholar
  39. Favis, R., Huang, J., Gerry, N. P., Culliford, A., Paty, P., Soussi, T., and Barany, F. (2003). Harmonized microarray mutation scanning analysis of p53 mutation in Undissected Colorectal Tumors. Hum Mutat in press.Google Scholar
  40. Feng, J., Buzin, C. H., Tang, S. H., Scaringe, W. A., and Sommer, S. S. (1999). Highly sensitive mutation screening by REF with low concentrations of urea: A blinded analysis of a 2-kb region of the p53 gene reveals two common haplotypes. Hum Mutat 14, 175-180.PubMedGoogle Scholar
  41. Fields, S., and Jang, S. K. (1990). Presence of a potent transcription activating sequence in the p53 protein. Science 249, 1046-1049.PubMedGoogle Scholar
  42. Flaman, J. M., Frebourg, T., Moreau, V., Charbonnier, F., Martin, C., Chappuis, P., Sappino, A. P., Limacher, J. M., Bron, L., Benhattar, J., et al. (1995). A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci USA 92, 3963-3967.PubMedGoogle Scholar
  43. Flaman, J. M., Robert, V., Lenglet, S., Moreau, V., Iggo, R., and Frebourg, T. (1998). Identification of human p53 mutations with differential effects on the bax and p21 promoters using functional assays in yeast. Oncogene 16, 1369-1372.PubMedGoogle Scholar
  44. Forrester, K., Lupold, S. E., Ott, V. L., Chay, C. H., Band, V., Wang, X. W., and Harris, C. C. (1995). Effects of p53 mutants on wild-type p53-mediated transactivation are cell type dependent. Oncogene 10, 2103-2111.PubMedGoogle Scholar
  45. Forslund, A., Kressner, U., Lonnroth, C., Andersson, M., Lindmark, G., and Lundholm, K. (2002). p53 mutations in colorectal cancer assessed in both genomic DNA and cDNA as compared to the presence of p53 LOH. Int J Oncol 21, 409-415.PubMedGoogle Scholar
  46. Fouquet, C., Antoine, M., Tisserand, P., Favis, R., Wislez, M., Como, F., Rabbe, N., Carette, M. F., Milleron, B., Barany, F., et al. (2004). Rapid and sensitive p53 alteration analysis in biopsies from lung cancer patients using a functional assay and a universal oligonucleotide array: a prospective study. Clin Cancer Res in press.Google Scholar
  47. Friedlander, P., Haupt, Y., Prives, C., and Oren, M. (1996). A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol Cell Biol 16, 4961-4971.PubMedGoogle Scholar
  48. Fronza, G., Inga, A., Monti, P., Scott, G., Campomenosi, P., Menichini, P., Ottaggio, L., Viaggi, S., Burns, P. A., Gold, B., and Abbondandolo, A. (2000). The yeast p53 functional assay: a new tool for molecular epidemiology. Hopes and facts. Mutat Res 462, 293-301.PubMedGoogle Scholar
  49. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T., and Prives, C. (2001). A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain. Mol Cell Biol 21, 1874-1887.PubMedGoogle Scholar
  50. Garcia, C. A., Ahmadian, A., Gharizadeh, B., Lundeberg, J., Ronaghi, M., and Nyren, P. (2000). Mutation detection by pyrosequencing: sequencing of exons 5-8 of the p53 tumor suppressor gene. Gene 253, 249-257.PubMedGoogle Scholar
  51. Garcia, J. F., Camacho, F. I., Morente, M., Fraga, M., Montalban, C., Alvaro, T., Bellas, C., Castano, A., Diez, A., Flores, T., et al. (2003). Hodgkin and Reed-Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 101, 681-689.PubMedGoogle Scholar
  52. Halevy, O., Michalovitz, D., and Oren, M. (1990). Different tumor-derived p53 mutants exhibit distinct biological activities. Science 250, 113-116.PubMedGoogle Scholar
  53. Hall, P. A., and Lane, D. P.(1994). p53 in tumour pathology- can we trust immunohistochemistry - revisited. J Pathol 172, 1-4.PubMedGoogle Scholar
  54. Hammel, P., LeroyViard, K., Chaumette, M. T., Villaudy, J., Falzone, M. C., Rouillard, D., Hamelin, R., Boissier, B., and Remvikos, Y. (1999). Correlations between p53-protein accumulation, serum antibodies and gene mutation in colorectal cancer. Int J Cancer 81, 712-718.PubMedGoogle Scholar
  55. Harris, C. C. (1991). Chemical and physical carcinogenesis: Advances and perspectives for the 1990s. Cancer Res 51, 5023s-5044s.PubMedGoogle Scholar
  56. Harris, C. C. (1993). p53 - at the crossroads of molecular carcinogenesis and risk assessment. Science 262, 1980-1981.PubMedGoogle Scholar
  57. Harris, N., Brill, E., Shohat, O., Prokocimer, M., Wolf, D., Arai, N., and Rotter, V. (1986). Molecular basis for heterogeneity of the human p53 protein. Mol Cell Biol 6, 4650-4656.PubMedGoogle Scholar
  58. Hashimoto, T., Tokuchi, Y., Hayashi, M., Kobayashi, Y., Nishida, K., Hayashi, S., Ishikawa, Y., Tsuchiya, S., Nakagawa, K., Hayashi, J., and Tsuchiya, E. (1999). p53 null mutations undetected by immunohistochemical staining predict a poor outcome with early-stage nonsmall cell lung carcinomas. Cancer Res 59, 5572-5577.PubMedGoogle Scholar
  59. Helland, A., Langerod, A., Johnsen, H., Olsen, A. O., Skovlund, E., and BorresenDale, A. L. (1998). p53 polymorphism and risk of cervical cancer. Nature 396, 530-531.PubMedGoogle Scholar
  60. Hildesheim, A., Schiffman, M., Brinton, L. A., Fraumeni, J. F., Herrero, R., Bratti, M. C., Schwartz, P., Mortel, R., Barnes, W., Greenberg, Met al.,. (1998). p53 polymorphism and risk of cervical cancer. Nature 396, 531-532.PubMedGoogle Scholar
  61. Hollstein, M., Marion, M. J., Lehman, T., Welsh, J., Harris, C. C., Martelplanche, G., Kusters, I., and Montesano, R. (1994). p53 mutations at A:T base pairs in angiosarcomas of vinyl Chloride-Exposed factory workers. Carcinogenesis 15, 1-3.PubMedGoogle Scholar
  62. Hoos, A., Urist, M. J., Stojadinovic, A., Mastorides, S., Dudas, M. E., Leung, D. H., Kuo, D., Brennan, M. F., Lewis, J. J., and Cordon-Cardo, C. (2001). Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158, 1245-1251.PubMedGoogle Scholar
  63. Huang, J., Kirk, B., Favis, R., Soussi, T., Paty, P., Cao, W., and Barany, F. (2002). An endonuclease/ligase based mutation scanning method especially suited for analysis of neoplastic tissue. Oncogene 21, 1909-1921.PubMedGoogle Scholar
  64. Hussain, S. P., Raja, K., Amstad, P. A., Sawyer, M., Trudel, L. J., Wogan, G. N., Hofseth, L. J., Shields, P. G., Billiar, T. R., Trautwein, C., et al. (2000). Increased p53 mutation load in nontumorous human liver of wilson disease and hemochromatosis: oxyradical overload diseases [In Process Citation]. Proc Natl Acad Sci U S A 97, 12770-12775.PubMedGoogle Scholar
  65. Irwin, M. S., Kondo, K., Marin, M. C., Cheng, L. S., Hahn, W. C., and Kaelin Jr, W. J. (2003). Chemosensitivity linked to p73 function. Cancer cell in press.Google Scholar
  66. Ishioka, C., Frebourg, T., Yan, Y., Vidal, M., Friend, S. H., Schmidt, S., and Iggo, R. (1993). Screening patients for heterozygotous p53 mutations using a functional assay in yeast. Nature Genetics 5, 124-129.PubMedGoogle Scholar
  67. Iwakuma, T., and Lozano, G. (2003). MDM2, an introduction. Mol Cancer Res 1, 993-1000.PubMedGoogle Scholar
  68. Jallepalli, P. V., Lengauer, C., Vogelstein, B., and Bunz, F. (2003). The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 278, 20475-20479.PubMedGoogle Scholar
  69. Joensuu, H., Isola, J., Lundin, M., Salminen, T., Holli, K., Kataja, V., Pylkkanen, L., Turpeenniemi-Hujanen, T., von Smitten, K., and Lundin, J. (2003). Amplification of erbB2 and erbB2 expression are superior to estrogen receptor status as risk factors for distant recurrence in pT1N0M0 breast cancer: a nationwide population-based study. Clin Cancer Res 9, 923-930.PubMedGoogle Scholar
  70. Kallioniemi, O. P., Wagner, U., Kononen, J., and Sauter, G. (2001). Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet 10, 657-662.PubMedGoogle Scholar
  71. Kato, S., Han, S. Y., Liu, W., Otsuka, K., Shibata, H., Kanamaru, R., and Ishioka, C. (2003). Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A 100, 8424-8429.PubMedGoogle Scholar
  72. Kim, S., Ruparel, H. D., Gilliam, T. C., and Ju, J. (2003). Digital genotyping using molecular affinity and mass spectrometry. Nat Rev Genet 4, 1001-1008.PubMedGoogle Scholar
  73. Kinzler, K. W., and Vogelstein, B. (1997). Cancer-susceptibility genes - Gatekeepers and caretakers. Nature 386, 761.PubMedGoogle Scholar
  74. Kinzler, K. W., and Vogelstein, B. (1998). Landscaping the cancer terrain. Science 280, 1036-1037.PubMedGoogle Scholar
  75. Kirk, B. W., Feinsod, M., Favis, R., Kliman, R. M., and Barany, F. (2002). Single nucleotide polymorphism seeking long term association with complex disease. Nucleic Acids Res 30, 3295-3311.PubMedGoogle Scholar
  76. Kirk, G. D., Camus-Randon, A. M., Mendy, M., Goedert, J. J., Merle, P., Trepo, C., Brechot, C., Hainaut, P., and Montesano, R. (2000). Ser-249 p53 mutations in plasma DNA of patients with hepatocellular carcinoma from The Gambia. J Natl Cancer Inst 92, 148-153.PubMedGoogle Scholar
  77. Kourkine, I. V., Hestekin, C. N., Buchholz, B. A., and Barron, A. E. (2002). High-throughput, high-sensitivity genetic mutation detection by tandem single-strand conformation polymorphism/heteroduplex analysis capillary array electrophoresis. Anal Chem 74, 2565-2572.PubMedGoogle Scholar
  78. Kovach, J. S., Hartmann, A., Blaszyk, H., Cunningham, J., Schaid, D., and Sommer, S. S. (1996). Mutation detection by highly sensitive methods indicates that p53 gene mutations in breast cancer can have important prognostic value. Proc Natl Acad Sci USA 93, 1093-1096.PubMedGoogle Scholar
  79. Kress, M., May, E., Cassingena, R., and May, P. (1979). Simian Virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 serum. J Virol 31, 472-483.PubMedGoogle Scholar
  80. Labrecque, S., and Matlashewski, G. J. (1995). Viability of wild type p53-containing and p53-deficient tumor cells following anticancer treatment: the use of human papillomavirus e6 to target p53. Oncogene 11, 387-392.PubMedGoogle Scholar
  81. Lane, D. (1992). p53, guardian of the genome. Nature 358, 15-16.PubMedGoogle Scholar
  82. Lane, D. P., and Benchimol, S.(1990). p53: oncogene or anti-oncogene? Genes and Development 4, 1-8.PubMedGoogle Scholar
  83. Latronico, A. C., Pinto, E. M., Domenice, S., Fragoso, M. C., Martin, R. M., Zerbini, M. C., Lucon, A. M., and Mendonca, B. B. (2001). An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab 86, 4970-4973.PubMedGoogle Scholar
  84. Legros, Y., Lafon, C., and Soussi, T. (1994a). Linear antigenic sites defined by the B-cell response to human p53 are localized predominantly in the amino and carboxy-termini of the protein. Oncogene 9, 2071-2076.PubMedGoogle Scholar
  85. Legros, Y., Meyer, A., Ory, K., and Soussi, T. (1994b). Mutations in p53 produce a common conformational effect that can be detected with a panel of monoclonal antibodies directed toward the central part of the p53 protein. Oncogene 9, 3689-3694.PubMedGoogle Scholar
  86. Lenner, P., Wiklund, F., Emdin, S. O., Arnerlov, C., Eklund, C., Hallmans, G., Zentgraf, H., and Dillner, J. (1999). Serum antibodies against p53 in relation to cancer risk and prognosis in breast cancer: a population-based epidemiological study. Brit J Cancer 79, 927-932.PubMedGoogle Scholar
  87. Li, F. P., FraumeniJr., J. F., Mulvihill, J. J., Blatner, W. A., Dreyfus, M. G., Tucker, M. A., and Miller, R. W. (1988). A cancer family syndrome in twenty-four kindreds. Cancer Res 48, 5358-5362.PubMedGoogle Scholar
  88. Liu, G., Parant, J. M., Lang, G., Chau, P., Chavez-Reyes, A., El-Naggar, A. K., Multani, A., Chang, S., and Lozano, G. (2004). Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36, 63-68.PubMedGoogle Scholar
  89. Lubin, R., Schlichtholz, B., Bengoufa, D., Zalcman, G., Tredaniel, J., Hirsch, A., Caron de Fromentel, C., Preudhomme, C., Fenaux, P., Fournier, G., et al. (1993). Analysis of p53 antibodies in patients with various cancers define B-Cell epitopes of human p53 -distribution on primary structure and exposure on protein surface. Cancer Res 53, 5872-5876.PubMedGoogle Scholar
  90. Lubin, R., Schlichtholz, B., Teillaud, J. L., Garay, E., Bussel, A., Wild, C., and Soussi, T. (1995a). p53 antibodies in patients with various types of cancer: assay, identification and characterization. Clinical Cancer Res 1, 1463-1469.Google Scholar
  91. Lubin, R., Zalcman, G., Bouchet, L., Trédaniel, J., Legros, Y., Cazals, D., Hirsh, A., and Soussi, T. (1995b). Serum p53 antibodies as early markers of lung cancer. Nature Med 1, 701-702.PubMedGoogle Scholar
  92. Makni, H., Franco, E. L., Kaiano, J., Villa, L. L., Labrecque, S., Dudley, R., Storey, A., and Matlashewski, G. (2000). p53 polymorphism in codon 72 and risk of human papillomavirus-induced cervical cancer: effect of inter-laboratory variation. Int J Cancer 87, 528-533.PubMedGoogle Scholar
  93. Makos Walles, M., Biel, M. A., El-Deiry, W. S., Nelkin, B. D., Issa, J. P., Cavenee, W. K., Kuerbitz, S. J., and Baylin, S. B. (1995). p53 activates expression of HIC-1, a new candidate tumor suppressor gene on 17p13.3. Nature Med 1, 570-577.Google Scholar
  94. Malkin, D., Li, F. P., Strong, L. C., Fraumeni, J. F., Nelson, C. E., Kim, D. H., Kassel, J., Gryka, M. A., Bischoff, F. Z., Tainsky, M. A., and Friend, S. H. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233-1238.PubMedGoogle Scholar
  95. Marin, M. C., Jost, C. A., Brooks, L. A., Irwin, M. S., O'Nions, J., Tidy, J. A., James, N., McGregor, J. M., Harwood, C. A., Yulug, I. G., et al. (2000). A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 25, 47-54.PubMedGoogle Scholar
  96. Marrogi, A. J., Khan, M. A., van Gijssel, H. E., Welsh, J. A., Rahim, H., Demetris, A. J., Kowdley, K. V., Hussain, S. P., Nair, J., Bartsch, H., et al. (2001). Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J Natl Cancer Inst 93, 1652-1655.PubMedCrossRefGoogle Scholar
  97. McShane, L. M., Aamodt, R., Cordon-Cardo, C., Cote, R., Faraggi, D., Fradet, Y., Grossman, H. B., Peng, A., Taube, S. E., and Waldman, F. M. (2000). Reproducibility of p53 immunohistochemistry in bladder tumors. National Cancer Institute, Bladder Tumor Marker Network [In Process Citation]. Clin Cancer Res 6, 1854-1864.PubMedGoogle Scholar
  98. Melero, J. A., Stitt, D. T., Mangel, W. F., and Carroll, R. B. (1979). Identification of new polypeptide species (48-55K) immunoprecipitable by antiserum to purified large T antigen and present in simian virus 40-infected and transformed cells. J Virol 93, 466-480.Google Scholar
  99. Melino, G., De Laurenzi, V., and Vousden, K. H. (2002). p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2, 605-615.PubMedGoogle Scholar
  100. Michael, D., and Oren, M. (2002). The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12, 53-59.PubMedGoogle Scholar
  101. Michalovitz, D., Halevy, O., and Oren, M. (1991). p53 mutations - gains or losses. J Cell Biochem 45, 22-29.PubMedGoogle Scholar
  102. Milner, J. (1995). Flexibility: the key to p53 function? Trends Biochem Sci 20, 49-51.PubMedGoogle Scholar
  103. Mitsudomi, T., Hamajima, N., Ogawa, M., and Takahashi, T. (2000). Prognostic significance of p53 alterations in patients with non-small cell lung cancer: a meta-analysis [In Process Citation]. Clin Cancer Res 6, 4055-4063.PubMedGoogle Scholar
  104. Moll, U. M., Laquaglia, M., Benard, J., and Riou, G. (1995). Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci USA 92, 4407-4411.PubMedGoogle Scholar
  105. Moll, U. M., Ostermeyer, A. G., Haladay, R., Winkfield, B., Frazier, M., and Zambetti, G. (1996). Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 16, 1126-1137.PubMedGoogle Scholar
  106. Moll, U. M., and Petrenko, O. (2003). The MDM2-p53 interaction. Mol Cancer Res 1, 1001-1008.PubMedGoogle Scholar
  107. Moll, U. M., Riou, G., and Levine, A. J. (1992). Two distinct mechanisms alter p53 in breast cancer - mutation and nuclear exclusion. Proc Natl Acad Sci USA 89, 7262-7266.PubMedGoogle Scholar
  108. Moll, U. M., and Schramm, L. M. (1998). p53 - An acrobat in tumorigenesis. Crit Rev Oral Biol Med 9, 23-37.PubMedGoogle Scholar
  109. Nigro, J. M., Baker, S. J., Preisinger, A. C., Jessup, J. M., Hostetter, R., Cleary, K., Bigner, S.H., Davidson, N., Baylin, S., Devilee, P., et al. (1989). Mutations in the p53 gene occur in diverse human tumour types. Nature 342, 705-708.PubMedGoogle Scholar
  110. Nikolaev, A. Y., Li, M., Puskas, N., Qin, J., and Gu, W. (2003). Parc: a cytoplasmic anchor for p53. Cell 112, 29-40.PubMedGoogle Scholar
  111. O. Connell, C. D., Atha, D. H., Oldenburg, M. C., Tian, J. X., Siebert, M., Handrow, R., Grooms, K., Heisler, L., and deArruda, M. (1999). Detection of p53 gene mutation: Analysis by single-strand conformation polymorphism and Cleavase fragment length polymorphism. Electrophoresis 20, 1211-1223.Google Scholar
  112. Okamoto, T., Suzuki, T., and Yamamoto, N. (2000). Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 18, 438-441.PubMedGoogle Scholar
  113. Onel, K., and Cordon-Cardo, C. (2004). MDM2 and prognosis. Mol Cancer Res 2, 1-8.PubMedGoogle Scholar
  114. Ory, K., Legros, Y., Auguin, C., and Soussi, T. (1994). Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13, 3496-3504.PubMedGoogle Scholar
  115. Pavletich, N. P., Chambers, K. A., and Pabo, C. O. (1993). The DNA-Binding domain of p53 contains the 4 conserved regions and the major mutation hot spots. Gene Develop 7, 2556-2564.Google Scholar
  116. Peyrat, J. P., Bonneterre, J., Lubin, R., Vanlemmens, L., Fournier, J., and Soussi, T. (1995). Prognostic significance of circulating p53 antibodies in patients undergoing surgery for locoregional breast cancer. Lancet 345, 621-622.PubMedGoogle Scholar
  117. Pharoah, P. D. P., Day, N. E., and Caldas, C. (1999). Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Brit J Cancer 80, 1968-1973.PubMedGoogle Scholar
  118. Puisieux, A., Lim, S., Groopman, J., and Ozturk, M. (1991). Selective targeting of p53 gene mutational hotspots in human cancers by etiologically defined carcinogens. Cancer Res 51, 6185-6189.PubMedGoogle Scholar
  119. Ralhan, R., Nath, N., Agarwal, S., Mathur, M., Wasylyk, B., and Shukla, N. K. (1998). Circulating p53 antibodies as early markers of oral cancer: correlation with p53 alterations [In Process Citation]. Clin Cancer Res 4, 2147-2152.PubMedGoogle Scholar
  120. Raycroft, L., Wu, H., and Lozano, G. (1990). Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249, 1049-1051.PubMedGoogle Scholar
  121. Resnick, M. A., and Inga, A. (2003). Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci U S A 100, 9934-9939.PubMedGoogle Scholar
  122. Ronaghi, M. (2001). Pyrosequencing sheds light on DNA sequencing. Genome Res 11, 3-11.PubMedGoogle Scholar
  123. Rotter, V., Witte, O. N., Coffman, R., and Baltimore, D. (1980). Abelson murine leukemia virus-induced tumors elicit antibodies against a host cell protein, p50. J Virol 36, 547-555.PubMedGoogle Scholar
  124. Rowan, S., Ludwig, R. L., Haupt, Y., Bates, S., Lu, X., Oren, M., and Vousden, K. H. (1996). Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J 15, 827-838.PubMedGoogle Scholar
  125. Saffroy, R., Lelong, J. C., Azoulay, D., Salvucci, M., Reynes, M., Bismuth, H., Debuire, B., and Lemoine, A. (1999). Clinical significance of circulating anti-p53 antibodies in European patients with hepatocellular carcinoma. Brit J Cancer 79, 604-610.PubMedGoogle Scholar
  126. Save, V., Nylander, K., and Hall, P. A. (1998). Why is p53 protein stabilized in neoplasia? Some answers but many more question! J Pathol 184, 348-350.PubMedGoogle Scholar
  127. Schaefer, K. L., Wai, D., Poremba, C., Diallo, R., Boecker, W., and Dockhorn-Dworniczak, B. (2002). Analysis of TP53 germline mutations in pediatric tumor patients using DNA microarray-based sequencing technology. Med Pediatr Oncol 38, 247-253.PubMedGoogle Scholar
  128. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J., and Howley, P. M. (1990). The E6 oncoprotein encoded by human papillomavirus type-16 and type-18 promotes the degradation of p53. Cell 63, 1129-1136.PubMedGoogle Scholar
  129. Schlichtholz, B., Legros, Y., Gillet, D., Gaillard, C., Marty, M., Lane, D., Calvo, F., and Soussi, T. (1992). The immune response to p53 in breast cancer patients is directed against immunodominant epitopes unrelated to the mutational hot spot. Cancer Res 52, 6380-6384.PubMedGoogle Scholar
  130. Schlichtholz, B., Tredaniel, J., Lubin, R., Zalcman, G., Hirsch, A., and Soussi, T. (1994). Analyses of p53 antibodies in sera of patients with lung carcinoma define immunodominant regions in the p53 protein. Br J Cancer 69, 809-816.PubMedGoogle Scholar
  131. Schmitz-Drager, B. J., Goebell, P. J., Ebert, T., and Fradet, Y. (2000). p53 immunohistochemistry as a prognostic marker in bladder cancer. playground for urology scientists? [In Process Citation]. Eur Urol 38, 691-700.PubMedGoogle Scholar
  132. Sharpless, N. E., and DePinho, R. A. (2002). p53: good cop/bad cop. Cell 110, 9-12.PubMedGoogle Scholar
  133. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites [published erratum appears in Genes Dev 2000 Mar 15;14(6):750]. Genes Dev 14, 289-300.PubMedGoogle Scholar
  134. Shiraishi, K., Kato, S., Han, S. Y., Liu, W., Otsuka, K., Sakayori, M., Ishida, T., Takeda, M., Kanamaru, R., Ohuchi, N., and Ishioka, C. (2004). Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J Biol Chem 279, 348-355.PubMedGoogle Scholar
  135. Shumaker, J. M., Tollet, J. J., Filbin, K. J., Montague-Smith, M. P., and Pirrung, M. C. (2001). APEX disease gene resequencing: mutations in exon 7 of the p53 tumor suppressor gene. Bioorg Med Chem 9, 2269-2278.PubMedGoogle Scholar
  136. Simon, R., and Sauter, G. (2003). Tissue microarray (TMA) applications: implications for molecular medicine. Expert Rev Mol Med 2003, 1-12.Google Scholar
  137. Smith-Sørensen, B., Gebhardt, M. C., Kloen, P., McIntyre, J., Aguilar, F., Cerutti, P., and Børresen, A.-L. (1993). Screening for TP53 mutations in osteosarcomas using constant denaturant gel electrophoresis (CDGE). Human Mutation 2, 274-285.PubMedGoogle Scholar
  138. Soengas, M. S., Alarcon, R. M., Yoshida, H., Giaccia, A. J., Hakem, R., Mak, T. W., and Lowe, S. W. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156-159.PubMedGoogle Scholar
  139. Soussi, T. (1996). The p53 tumour suppressor gene: a model for molecular epidemiology of human cancer. Mol Med Today 2, 32-37.PubMedGoogle Scholar
  140. Soussi, T. (2000). p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res 60, 1777-1788.PubMedGoogle Scholar
  141. Soussi, T., and Béroud, C. (2001). Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1, 233-240.PubMedGoogle Scholar
  142. Soussi, T., and Béroud, C. (2003). Significance of TP53 mutations in human cancer: A critical analysis of mutations at CpG dinucleotides. Hum Mutat 21, 192-200.PubMedGoogle Scholar
  143. Srivastava, S., Zou, Z. Q., Pirollo, K., Blattner, W., and Chang, E. H. (1990). Germ-line transmission of a mutated p53 gene in a cancer-prone family with li-fraumeni syndrome. Nature 348, 747-749.PubMedGoogle Scholar
  144. Staib, F., Hussain, S. P., Hofseth, L. J., Wang, X. W., and Harris, C. C. (2003). TP53 and liver carcinogenesis. Hum Mutat 21, 201-216.PubMedGoogle Scholar
  145. Steels, E., Paesmans, M., Berghmans, T., Branle, F., Lemaitre, F., Mascaux, C., Meert, A. P., Vallot, F., Lafitte, J. J., and Sculier, J. P. (2001). Role of p53 as a prognostic factor for survival in lung cancer: a systematic review of the literature with a meta-analysis. Eur Respir J 18, 705-719.PubMedGoogle Scholar
  146. Storey, A., Thomas, M., Kalita, A., Harwood, C., Gardiol, D., Mantovani, F., Breuer, J., Leigh, I. M., Matlashewski, G., and Banks, L. (1998). Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393, 229-234.PubMedGoogle Scholar
  147. Strano, S., Munarriz, E., Rossi, M., Cristofanelli, B., Shaul, Y., Castagnoli, L., Levine, A. J., Sacchi, A., Cesareni, G., Oren, M., and Blandino, G. (2000). Physical and functional interaction between p53 mutants and different isoforms of p73. J Biol Chem 275, 29503-29512.PubMedGoogle Scholar
  148. Sullivan Pepe, M., Etzioni, R., Feng, Z., Potter, J. D., Thompson, M. L., Thornquist, M., Winget, M., and Yasui, Y. (2001). Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93, 1054-1061.Google Scholar
  149. Tada, M., Furuuchi, K., Kaneda, M., Matsumoto, J., Takahashi, M., Hirai, A., Mitsumoto, Y., Iggo, R. D., and Moriuchi, T. (2001). Inactivate the remaining p53 allele or the alternate p73? Preferential selection of the Arg72 polymorphism in cancers with recessive p53 mutants but not transdominant mutants. Carcinogenesis 22, 515-517.PubMedGoogle Scholar
  150. Takahashi, T., Nau, M. M., Chiba, I., Birrer, M. J., Rosenberg, R. K., Vinocour, M., Levitt, M., Pass, H., Gazdar, A. F., and Minna, J. D. (1989). p53 - a frequent target for genetic abnormalities in lung cancer. Science 246, 491-494.PubMedGoogle Scholar
  151. Tavassoli, M., Brunel, N., Maher, R., Johnson, N. W., and Soussi, T. (1998). p53 antibodies in the saliva of patients with squamous cell carcinoma of the oral cavity. Int J Cancer 78, 390-391.PubMedGoogle Scholar
  152. Thomas, D. C., Nardone, G. A., and Randall, S. K. (1999a). Amplification of padlock probes for DNA diagnostics by cascade rolling circle amplification or the polymerase chain reaction. Arch Pathol Lab Med 123, 1170-1176.PubMedGoogle Scholar
  153. Thomas, M., Kalita, A., Labrecque, S., Pim, D., Banks, L., and Matlashewski, G. (1999b). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19, 1092-1100.PubMedGoogle Scholar
  154. Tonisson, N., Zernant, J., Kurg, A., Pavel, H., Slavin, G., Roomere, H., Meiel, A., Hainaut, P., and Metspalu, A. (2002). Evaluating the arrayed primer extension resequencing assay of TP53 tumor suppressor gene. Proc Natl Acad Sci U S A 99, 5503-5508.PubMedGoogle Scholar
  155. Tornaletti, S., Rozek, D., and Pfeifer, G. P. (1993). The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer. Oncogene 8, 2051-2057.PubMedGoogle Scholar
  156. Toyooka, S., Tsuda, T., and Gazdar, A. F. (2003). The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat 21, 229-239.PubMedGoogle Scholar
  157. Trivers, G. E., Cawley, H. L., Debenedetti, V. M. G., Hollstein, M., Marion, M. J., Bennett, W. P., Hoover, M. L., Prives, C. C., Tamburro, C. C., and Harris, C. C. (1995). Anti-p53 antibodies in sera of workers occupationally exposed to vinyl chloride. J Nat Cancer Inst 87, 1400-1407.PubMedGoogle Scholar
  158. Trivers, G. E., De Benedetti, V. M. G., Cawley, H. L., Caron, G., Harrington, A. M., Bennet, W. P., Jett, J. R., Colby, T. V., Tazelaar, H., Pairolero, P., et al. (1996). Anti-p53 antibodies in sera from patients with chronic obstructive pulmonary disease can predate a diagnosis of cancer. Clin Cancer Res 2, 1767-1775.PubMedGoogle Scholar
  159. Vahakangas, K. (2003). TP53 mutations in workers exposed to occupational carcinogens. Hum Mutat 21, 240-251.PubMedGoogle Scholar
  160. van Oijen, M. G., and Slootweg, P. J. (2000). Gain-of-function mutations in the tumor suppressor gene p53 [In Process Citation]. Clin Cancer Res 6, 2138-2145.PubMedGoogle Scholar
  161. Varley, J. M. (2003). Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21, 313-320.PubMedGoogle Scholar
  162. Varley, J. M., Attwooll, C., White, G., McGown, G., Thorncroft, M., Kelsey, A. M., Gereaves, M., Boyle, J., and Birch, J. M. (1999a). Characterization of germline TP53 splicing mutations and their genetic and functional analysis. Oncogene 20, 2647-2654.Google Scholar
  163. Varley, J. M., McGown, G., Thorncroft, M., James, L. A., Margison, G. P., Forster, G., Evans, D. G. R., Harris, M., Kelsey, A. M., and Birch, J. M. (1999b). Are there low-penetrance TP53 alleles? Evidence from childhood adrenocortical tumors. Amer J Hum Genet 65, 995-1006.PubMedGoogle Scholar
  164. Venkatachalam, S., Tyner, S. D., Pickering, C. R., Boley, S., Recio, L., French, J. E., and Donehower, L. A. (2001). Is p53 haploinsufficient for tumor suppression? Implications for the p53+/- mouse model in carcinogenicity testing. Toxicol Pathol 29 Suppl, 147-154.PubMedGoogle Scholar
  165. Vogelstein, B., Lane, D., and Levine, A. J. (2000). Surfing the p53 network. Nature 408, 307-310.PubMedGoogle Scholar
  166. Vousden, K. H. (2000). p53. Death star [In Process Citation]. Cell 103, 691-694.PubMedGoogle Scholar
  167. Vousden, K. H., and Woude, G. F. (2000). The ins and outs of p53 [In Process Citation]. Nat Cell Biol 2, E178-180.PubMedGoogle Scholar
  168. Wagner, J., Portwine, C., Rabin, K., Leclerc, J. M., Narod, S. A., and Malkin, D. (1994). High frequency of germline p53 mutations in childhood adrenocortical cancer. J Nat Cancer Inst 86, 1707-1710.PubMedGoogle Scholar
  169. Walker, K. K., and Levine, A. J. (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA 93, 15335-15340.PubMedGoogle Scholar
  170. Waridel, F., Estreicher, A., Bron, L., Flaman, J. M., Fontolliet, C., Monnier, P., Frebourg, T., and Iggo, R. (1997). Field cancerisation and polyclonal p53 mutation in the upper aerodigestive tract. Oncogene 14, 163-169.PubMedGoogle Scholar
  171. Warneford, S. G., Witton, L. J., Townsend, M. L., Rowe, P. B., Reddel, R. R., Dalla-Pozza, L., and Symonds, G. (1992). Germ-line splicing mutation of the p53 gene in a cancerprone family. Cell Growth Differ 3, 839-846.PubMedGoogle Scholar
  172. Wen, W. H., Bernstein, L., Lescallett, J., Beazer-Barclay, Y., Sullivan-Halley, J., White, M., and Press, M. F. (2000). Comparison of TP53 mutations identified by oligonucleotide microarray and conventional DNA sequence analysis. Cancer Res 60, 2716-2722.PubMedGoogle Scholar
  173. Werner, J. A., Gottschlich, S., Folz, B. J., Goeroegh, T., Lippert, B. M., Maass, J. D., and Rudert, H. (1997). p53 serum antibodies as prognostic indicator in head and neck cancer. Cancer Immunol Immunother 44, 112-116.PubMedGoogle Scholar
  174. Wikman, F. P., Lu, M. L., Thykjaer, T., Olesen, S. H., Andersen, L. D., Cordon-Cardo, C., and Orntoft, T. F. (2000). Evaluation of the performance of a p53 sequencing microarray chip using 140 previously sequenced bladder tumor samples [In Process Citation]. Clin Chem 46, 1555-1561.PubMedGoogle Scholar
  175. Wild, C. P., Jansen, L. A., Cova, L., and Montesano, R. (1993). Molecular dosimetry of aflatoxin exposure: contribution to understanding the multifactorial etiopathogenesis of primary hepatocellular carcinoma with particular reference to hepatitis B virus. Environ Health Perspect 99, 115-122.PubMedGoogle Scholar
  176. Williams, C., Norberg, T., Ahmadian, A., Ponten, F., Bergh, J., Inganas, M., Lundeberg, J., and Uhlen, M. (1998). Assessment of sequence-based p53 gene analysis in human breast cancer: messenger RNA in comparison with genomic DNA targets. Clin Chem 44, 455-462.PubMedGoogle Scholar
  177. Yang, A., Kaghad, M., Caput, D., and McKeon, F. (2002). On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18, 90-95.PubMedGoogle Scholar
  178. Zalcman, G., Schlichtholz, B., Trédaniel, J., Urban, T., Lubin, R., Dubois, I., Milleron, B., Hirsh, A., and Soussi, T. (1998). Monitoring of p53 auto antibodies in lung cancer during therapy: relationship to response to treatment. Clin Cancer Res 4, 1359-1366.PubMedGoogle Scholar
  179. Zhang, Y., Kaur, M., Price, B. D., Tetradis, S., and Makrigiorgos, G. M. (2002). An amplification and ligation-based method to scan for unknown mutations in DNA. Hum Mutat 20, 139-147.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Thierry Soussi
    • 1
  1. 1.Laboratoire de Génotoxicologie des tumeursHôpital TenonFrance

Personalised recommendations