Fourier Multipliers

  • Roald M. Trigub
  • Eduard S. Bellinsky


In this chapter we study translation invariant linear operators representable as the convolution of a function and a measure (see, for example, Stein and Weiss [M-1971], Ch. I), more exactly operators generated by a numerical sequence {λk} as
$$ f \sim \sum {{c_k}(f){e_k} \mapsto \sum {{\lambda _k}{c_k}(f){e_k} \sim \Delta f} } $$


Fourier Series Hardy Space Comparison Principle FOURIER Multiplier Summability Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Roald M. Trigub
    • 1
  • Eduard S. Bellinsky
    • 2
  1. 1.Donetsk National UniversityDonetskUkraine
  2. 2.University of West IndiesBridgetownBarbados

Personalised recommendations