Advertisement

ICAME 2003 pp 21-26 | Cite as

Angular Distribution of Hyperfine Magnetic Field in Fe3O4 and Fe66Ni34 from Mössbauer Polarimetry

  • K. Szymański
  • D. Satuła
  • L. Dobrzyński
Conference paper

Abstract

Experimental determination of some angular averages of hyperfine field is demonstrated. The averages relates to magnetic structure. Exemplary results of the measurements for Fe3O4 and Fe66Ni34 show that it is possible to obtain valuable information about the field magnitudes and orientations even when distributions of fields are present in the system under study.

Keywords

Hyperfine Field Mossbauer Spectrum Magnetic Texture Applied External Magnetic Field Angular Average 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pfannes, H.-D. and Fisher, H., Appl. Phys. 13 (1977), 317.ADSCrossRefGoogle Scholar
  2. 2.
    Pfannes, H.-D. and Paniago, R. M., Hyp. Interact. 71 (1992), 1499.Google Scholar
  3. 3.
    Frauenfelder, H., Nagle, D. E., Taylor, R. D., Cochran, D. R. F. and Visscher, W. M., Phys. Rev. 126 (1962), 1065.Google Scholar
  4. 4.
    Szymanski, K., NIMB 134 (1998), 405.CrossRefGoogle Scholar
  5. 5.
    Szymanski, K., Dobrzynski, L., Prus, B. and Cooper, M. J., NIMB 119 (1996), 438.ADSCrossRefGoogle Scholar
  6. 6.
    Le Caer, G., Dubois, J. M., Fischer, H., Gonser, I. U. and Wagner, H. G., NIM B 5 (1984), 25.ADSCrossRefGoogle Scholar
  7. 7.
    Le Caer, G. and Brand, R. A., J. Phys.: Condens. Matter 10 (1998), 10715.CrossRefGoogle Scholar
  8. 8.
    Rancourt, D. G., In: G. J. Long and F. Grandjean (eds), Mössbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 5, Plenum, New York, 1996, p. 105.Google Scholar
  9. 9.
    Szymanski, K., Satula, D. and Dobrzynski, L., J. Phys.: Cond. Matter 1 (1999), 881.ADSCrossRefGoogle Scholar
  10. 10.
    Szymanski, K., J. Phys.: Cond. Matter 12 (2000), 7495.ADSCrossRefGoogle Scholar
  11. 11.
    Rueff, J. P., Shukla, A., Kaprolat, A., Krisch, M., Lorenzen, M., Sette, F. and Verbeni, R., Phys. Rev. B 63 (2001), 132409.Google Scholar
  12. 12.
    Weiss, J., Proc. R. Soc. London A 82 (1963), 281.CrossRefGoogle Scholar
  13. 13.
    Dubrovinsky, L., Dubrovinska, N., Abrikosov, I. A., Vennström, M., Westman, F., Carlson, S., van Schilfgaarde, M. and Johansson, B., PRL 86 (2001), 4851.ADSCrossRefGoogle Scholar
  14. 14.
    van Schilfgaarde, M., Abrikosov, I. A. and Johansson, B., Nature 400 (1999), 46.ADSCrossRefGoogle Scholar
  15. 15.
    Brown, P. J., Kanomata, T., Matsumoto, M., Neumann, K.-U. and Ziebeck, K. R. A., JMMM 242–245 (2002), 781.ADSCrossRefGoogle Scholar
  16. 16.
    Ulrich, H. and Hesse, J., JMMM 45 (1984), 315.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • K. Szymański
    • 1
  • D. Satuła
    • 1
  • L. Dobrzyński
    • 1
    • 2
  1. 1.Institute of Experimental PhysicsUniversity of BialystokBiałystokPoland
  2. 2.The Sołtan Institute for Nuclear StudiesOtwock-ŚwierkPoland

Personalised recommendations