ICAME 2003 pp 205-212 | Cite as

Magnetic Properties of Iron Clusters in Silver

  • M. Elzain
  • A. al Rawas
  • A. Yousif
  • A. Gismelseed
  • A. Rais
  • I. Al-Omari
  • K. Bouziane
  • H. Widatallah
Conference paper

Abstract

The discrete variational method is used to study the effect of interactions of iron impurities on the magnetic moments, hyperfine fields and isomer shifts at iron sites in silver. We study small clusters of iron atoms as they grow to form FCC phase that is coherent with the silver lattice. The effects of the lattice relaxation and the ferromagnetic and antiferromagnetic couplings are also considered. When Fe atoms congregate around a central Fe atom in an FCC arrangement under ferromagnetic coupling, the local magnetic moment and the contact charge density at the central atom hardly change as the cluster builds up, whereas the hyperfine field increases asymptotically as the number of Fe nearest neighbors increases. Introduction of antiferromagnetic coupling has minor effect on the local magnetic moments and isomer shifts, however it produces large reduction in the hyperfine field. The lattice relaxation of the surrounding Fe atoms towards a BCC phase around a central Fe atom leads to reduction in the magnetic moment accompanied by increase in the magnetic hyperfine field.

Key words

cluster size magnetic moment magnetic hyperfine field isomer shift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kahl, S. and Krebs, H., Phys. Rev. B 63 (2001), 172103.ADSCrossRefGoogle Scholar
  2. 2.
    Morales, M. A., Passamani, E. C. and Baggio-Saitovitch, E., Phys. Rev. B 66 (2002), 144422.ADSCrossRefGoogle Scholar
  3. 3.
    Gubanov, V. A., Liechtenstein, A. I. and Postnikov, A. V., Magnetism and Electronic Structure of Crystals, Springer Series in Solid-State Sciences, Vol. 98, Springer-Verlag, 1992.CrossRefGoogle Scholar
  4. 4.
    Oswald, A., Zeller, R., Braspenning, B. J. and Dederichs, P. H., J. Phys. F (Met. Phys.) 15 (1985), 193.ADSCrossRefGoogle Scholar
  5. 5.
    Nogueira, R. and Petrilli, H., Phys. Rev. B 60 (1999), 4120.ADSCrossRefGoogle Scholar
  6. 6.
    Averil, F. W. and Ellis, D. E., J. Chem. Phys. 59 (1973), 6412.ADSCrossRefGoogle Scholar
  7. 7.
    Elzain, M. E., Ellis, D. E. and Guenzberger, D., Phys. Rev. B 34 (1986), 1430.ADSCrossRefGoogle Scholar
  8. 8.
    Elzain, M., Al Rawas, A., Yousif, A., Gismelseed, A., Rais, A., Al Oman, I. and Widatallah, H., to be published.Google Scholar
  9. 9.
    Herper, H. C., Hoffmann, E. and Entel, P., Phys. Rev. B 60 (1999), 3839.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • M. Elzain
    • 1
  • A. al Rawas
    • 1
  • A. Yousif
    • 1
  • A. Gismelseed
    • 1
  • A. Rais
    • 1
  • I. Al-Omari
    • 1
  • K. Bouziane
    • 1
  • H. Widatallah
    • 2
  1. 1.Department of PhysicsCollege of ScienceAlkhod 123Oman
  2. 2.Department of Physics, Faculty of ScienceKhartoum UniversitySudan

Personalised recommendations