Effect of Physiological Status on Endogenous Excretion of Purine Derivatives in Cattle

  • J. Balcells
  • F. Vicente
  • P. Orellana-Boero
  • S. Martin-Orue
  • M. Gonzalez-Ronquillo

Abstract

The present study examined the endogenous urinary excretion of purine derivatives (PD: allantoin and uric acid) in normally fed animals in different physiological states. Animals fitted with a simple rumen cannula and a T-shaped duodenal cannula were used in three separate experiments. In Experiment I, three heifers (about 8 months old; 225 ±4.4 kg) fed a cereal based diet were used. In Experiment II, two Friesian dry cows (about 24 months old; 696 ±21 kg) fed at maintenance level on chopped barley straw and barley grain (50:50). In Experiment 3, three multiparous crossbreed Holstein-Friesian cows (560 ±10 kg, average milk yield 25 ±3.2 kg/d) in their third lactation were used. The cows were fed a mixed diet (48:52; roughage: concentrate). 15N ammonium phosphate was infused continuously into the rumen to label microbial purine bases (PB). Duodenal flow of digesta and PB was determined using a dual marker system. After 72–80 h purine enrichment had reached plateau values in body pools and in urine. Daily endogenous PD excretion (µmol/W0.75) obtained in dry cows (310 ±31.0) were not significantly different from that obtained in growing steers (236 ±6.0) but were consistently higher (512.4 ±36.4) in lactating cows.

Keywords

Hydrolysis Corn Lactate Creatinine Straw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    GIESECKE, D., STANGASSINGER, M., TIEMEYER, W., Nucleic acid digestion and urinary purines metabolites in sheep nourished by intra-gastric infusion, Can. J. Anim. Sci. 64 (1984) 144–145.Google Scholar
  2. [2]
    CHEN, X.B., ØRSKOV, E.R., HOVELL, F.D. DEB, Excretion of purine derivatives by ruminants: endogenous excretion differences between cattle and sheep, Br. J. Nutr. 63 (1990) 121–130.PubMedCrossRefGoogle Scholar
  3. [3]
    BALCELLS, J., GUADA, J.A., CASTRILLO, C., GASA, J., Urinary excretion of allantoin and allantoin precursors by sheep after different rates of purine infusion into the duodenum, J. Agri. Sci. Camb. 116 (1991) 309–317.CrossRefGoogle Scholar
  4. [4]
    GIESECKE, D., BLASLIEMKER., J., SÜDEKUM, K.H., STAINGASSINGER, M., Plasma level, clearance and renal excretion of endogenous and ruminal purines in the bovine, J. Anim. Physiol. Anim. Nutr. 70 (1993) 180–189.CrossRefGoogle Scholar
  5. [5]
    FAICHNEY, G.J., “The use of markers to partition digestion within the gastrointestinal tract of ruminants”, Digestion and Metabolism in the Ruminant, (I.W. MACDONALD, A.C.I. WARNER, Eds.), University of New England Publishing Unit, Armidale, Australia (1975) pp. 277–291.Google Scholar
  6. [6]
    MARTIN-ORUE, S.M., BALCELLS, J., GUADA, J.A., FONDEVILA, M., Microbial nitrogen production in growing heifers: direct measurement of duodenal flow of purine bases versus urinary excretion of purine derivatives as estimation procedures, Anim. Feed Sci. Technol. 88 (2000) 171–188.Google Scholar
  7. [7]
    BALCELLS, J., GUADA, J.A., PEIRÓ, J.M., PARKER, D.S., Simultaneous determination of allantoin and oxypurines in biological fluids by high-performance liquid chromatography, J. Chromatography 575 (1992) 153–157.CrossRefGoogle Scholar
  8. [8]
    MARTÍN ORÚE, S.M., BALCELLS, J., GUADA, J.A., CASTRILLO, C., Endogenous purine and pyrimidine derivative excretion in pregnant sows, Br. J. Nutr. 73 (1995) 375–385.CrossRefGoogle Scholar
  9. [9]
    KERR, J.E., SERAIDARIAN, K., The separation of purine nucleosides from free purines and determination of the purines and ribose in these fractions, J. Biol. Chem. 159 (1945) 211–225.Google Scholar
  10. [10]
    AHARONI, Y., TAGARI, H., Use of Nitrogen-15 Determinations of purine nitrogen fraction of digesta to define nitrogen metabolism traits in the rumen, J. Dairy Sci. 74 (1991) 2540–2547.PubMedCrossRefGoogle Scholar
  11. [11]
    YOUNG, E.G., CONWAY, C.F., On the estimation of allantoin by the RiminiSchryver reaction, J. Biol. Chem. 142 (1942) 839–853.Google Scholar
  12. [12]
    PÉREZ, J.F., BALCELLS, J., GUADA, J.A., CASTRILLO, C., Determination of rumen microbial-nitrogen production in sheep: a comparison of urinary purine excretion with methods using 15N and purine bases as markers of microbial-nitrogen entering the duodenum, Br. J. Nutr. 75 (1996) 699–709.PubMedCrossRefGoogle Scholar
  13. [13]
    WATTIAUX, M.A., REED, J.D., Fractionation of nitrogen isotopes by mixed ruminal bacteria, J. Anim. Sci. 73 (1995) 257–266.PubMedGoogle Scholar
  14. [14]
    PETRI, A., PFEFFER, E., Changes of 15N enrichment in N of rumen ammonia, rumen bacteria and milk protein during and following continuous intraruminal infusion of 15NH4Cl to goats, J. Anim. Physiol. Anim. Nutr. 57 (1987) 75.CrossRefGoogle Scholar
  15. [15]
    BRODERICK, G.A., MERCHEN, N.R., Markers for quantifying microbial protein synthesis in the rumen, J. Dairy Sci. 75 (1992) 2618–2632.PubMedCrossRefGoogle Scholar
  16. [16]
    CHEN, X.B., HOVELL, F.D. DEB, ØRSKOV, E.R., BROWN, D.S., Excretion of purine derivatives by ruminants: effect of exogenous nucleic acid supply on purine derivative excretion by sheep, Br. J. Nutr. 63 (1990) 131–142.PubMedCrossRefGoogle Scholar
  17. [17]
    VERBIC, J., CHEN., X.B., MCLEOD., N.A., ØRSKOV, E.R., Excretion of purine derivatives by ruminants. Effect of microbial nucleic acid infusion on purine derivative excretion by steers, J. Agric. Sci. Camb. 114 (1990) 243–248.CrossRefGoogle Scholar
  18. [18]
    GONDA, H.L., EMMANUELSON, M., MURPHY, M., The effect of roughage to concentrate ratio in the diet on nitrogen and purine metabolism in dairy cows, Anim. Feed Sci. Technol. 64 (1996) 27–42.Google Scholar
  19. [19]
    VAGNONI, D.B., BRODERICK., G.A., CLAYTON., M.K., HATFIELD., R.D., Excretion of purine derivatives by Holstein cows abomasally infused with incremental amounts of purines, J. Dairy Sci. 80 (1997) 1695–1702.PubMedCrossRefGoogle Scholar
  20. [20]
    DE BOEVER, J.L., IANTCHEVA, N., COTTYN, B.G., DE CAMPENEERE, S., FIEMS, L.O., BOUQUÉ, CH.V., Microbial protein synthesis in growing-finishing bulls estimated from the urinary excretion of purine derivatives, Anim. Feed Sci. Technol. 75 (1998) 93–109.CrossRefGoogle Scholar
  21. [21]
    SUSMEL, P., SPHANGERO., M., STEFANON., B., MILLS., C.R., PLAZZOTTA, E., Digestibility and allantoin excretion in cow fed diets differing in nitrogen content, Livestock Prod. Sci. 39 (1994) 97–99.CrossRefGoogle Scholar
  22. [22]
    LINDBERG, J.E., JACOBSON, K.G., Nitrogen and purine metabolism at varying energy and protein supplies in sheep sustained on intra-gastric infusion, Br. J. Nutr. 64 (1990) 359–370.PubMedCrossRefGoogle Scholar
  23. [23]
    BALCELLS, J., GANUZA., J.M., PÉREZ., J.F., MARTÍN-ORÚE, S.M., GONZÁLEZ RONQUILLO, M., Urinary excretion of purine derivatives as an index of microbial nitrogen intake in growing rabbits, Br. J. Nutr. 79 (1998) 373–380.PubMedCrossRefGoogle Scholar
  24. [24]
    ØRSKOV, E.R., GRUBB, D.A., WENHAN, G., CORRIGALL, W., The sustenance of growing and fattening ruminants by intragastric infusion of volatile fatty acids and protein, Br. J. Nutr. 41 (1979) 553–558.PubMedCrossRefGoogle Scholar
  25. [25]
    SMITH, R.H., “Nitrogen Metabolism in the rumen and the composition and nutritive value of nitrogen compounds entering the duodenum”, Digestion and Metabolism in the Ruminant, (I.W. MACDONALD, A.C.I. WARNER, Eds.), University of New England Publishing Unit, Armidale, Australia (1975) pp. 399–415.Google Scholar
  26. [26]
    KIRCHGESSNER VON, M., KREUZER, M., Harstoff und allantoin in der Milch und Allantoinausscheidung von Kühen wäherend ung nach Verfütterung zu hoher und zu niedriges Proteinmengen. 5. Mitteilung. Zum Einflub von proteinfehlernáhrung bei laktiereden Kúben und daraus entshenden Nachwirkirkungen, J. Anim. Physiol. Anim. Nutr. 70 (1985) 82.Google Scholar
  27. [27]
    DANIELS, Z.M., CHEN., X.B., KYLE., D.J., SINCLAIR, K., ØRSKOV, E.R., Purine derivatives in urine and plasma of lactating cows given different levels of feed intake, Anim. Prod. 58 (1994) 453 (Abst.).Google Scholar
  28. [28]
    FUJIHARA, T., ØRSKOV, E.R., REEDS, P.J., KYLE, D.J., The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition, J. Agric. Sci. Camb. 109 (1987) 7–12.CrossRefGoogle Scholar
  29. [29]
    BLAXTER, K.L., WOOD, W.A., The nutrition of the young Ayrshire calf. 3. The metabolism of the calf during estimation and subsequent realimentation, Br. J. Nutr. 5 (1951) 29–55.PubMedCrossRefGoogle Scholar
  30. [30]
    GUERNESEY, D.L., EDELMAN, J.S., Regulation of thermogenesis by thyroid hormones, Molecular basis of thyroid hormone action, (J. HOPPENHEIMER, H.H. SAMUELS, Eds.), New York, Academic Press (1983) pp. 293–324.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • J. Balcells
    • 1
  • F. Vicente
    • 1
  • P. Orellana-Boero
    • 2
  • S. Martin-Orue
    • 3
  • M. Gonzalez-Ronquillo
    • 3
  1. 1.Departamento Producción Animal y Ciencia de los AlimentosFacultad de VeterinariaZaragozaSpain
  2. 2.Departamento de Ciencias Pecuarias, Facultad de Medicina VeterinariaUniversidad de ConcepciónChile
  3. 3.Departamento de Producción AnimalFMVZ Universidad Autónoma del Estado de MéxicoTolucaMéxico

Personalised recommendations