Skip to main content

Abstract

Neuromorphic circuits are analog circuits that implement models of biological systems for sensory processing. Because the neuromorphic circuits share the same physical constraints as their biological counterparts, they have similar organizational structures, and use similar strategies for optimizing robustness to noise, and power consumption. Silicon retinas and other neuromorphic vision chips, built as hardware models of biological vision systems, represent efficient artificial sensory pre-processors. General processing networks which use detailed models of neurons are also being investigated. Simple neuromorphic systems have been built, using networks of silicon neurons and neuromorphic chips as front-ends for pre-processing incoming sensory signals. In this chapter we present two representative case studies describing a single-chip vision sensor and a multi-chip processing network, that contain most of the characteristic elements found in today’s neuromorphic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Douglas, M. Mahowald, and C. Mead. Neuromorphic analogue VLSI. Annu. Rev. Neurosci., 18:255–281, 1995.

    Article  Google Scholar 

  2. M. Mahowald and C. Mead. Analog VLSI and Neural Systems, chapter Silicon Retina, pages 257–278. Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  3. K.A. Boahen and A.G. Andreou. A contrast sensitive silicon retina with reciprocal synapses. In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors, Advances in neural information processing systems, volume 4. IEEE, MIT Press, 1992.

    Google Scholar 

  4. R. Sarpeshkar, R.F. Lyon, and C.A. Mead. An analog VLSI cochlea with new transconductance amplifiers and nonlinear gain control. In Proc. IEEE Int. Symp. on Circuits and Systems, volume 3, pages 292–296. IEEE, May 1996.

    Google Scholar 

  5. C. Koch and B. Mathur. Neuromorphic vision chips. IEEE Spectrum, 33 (5):38–46, May 1996.

    Article  Google Scholar 

  6. V. Brajovic and T. Kanade. Computational sensor for visual tracking with attention. IEEE Journal of Solid State Circuits, 33(8):1199–1207, August 1998.

    Article  Google Scholar 

  7. R. Etienne-Cummings, J. Van der Spiegel, and P. Mueller. A visual smoot pursuit tracking chip. In D. S. Touretzky, M. C. Mozer, and Hasselmo M. E., editors, Advances in Neural Information Processing Systems, volume 8. MIT Press, 1996.

    Google Scholar 

  8. T. G. Morris, T. K. Horiuchi, and S. P. De-Weerth. Object-based selection within an analog VLSI visual attention system. IEEE Trans. on Circuits and Systems II, 45(12):1564–1572, 1998.

    Article  Google Scholar 

  9. G. Indiveri. A current-mode hysteretic winner-take-all network, with excitatory and inhibitory coupling. Analog Integrated Circuits and Signal Processing, 28(3):279–291, September 2001.

    Article  Google Scholar 

  10. T. Delbrück and C.A. Mead. Analog VLSI phototransduction by continuous-time, adaptive, logarithmic photoreceptor circuits. In C. Koch and H. Li, editors, Vision Chips: Implementing vision algorithms with analog VLSI circuits, pages 139–161. IEEE Computer Society Press, 1995.

    Google Scholar 

  11. G. Indiveri. Neuromorphic analog VLSI sensor for visual tracking: Circuits and application examples. IEEE Trans. on Circuits and Systems II, 46(11):1337–1347, November 1999.

    Article  Google Scholar 

  12. S.-C. Liu, J. Kramer, G. Indiveri, T. Delbrück, and R. Douglas. Analog VLSI:Circuits and Principles. MIT Press, 2002.

    Google Scholar 

  13. C. Tomazou, J. Lidgey, F., and G. Haigh, D., editors. Analogue IC design: the currentmode approach. Peter Peregrinus Ltd, 1990.

    Google Scholar 

  14. T. Serrano and B. Linares-Barranco. A modular current-mode high precision winnertake-all circuit. IEEE Trans. on Circuits and Systems II, 42(2):132–134, Feb 1995.

    Article  Google Scholar 

  15. J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C.A. Mead. Winnertake-all networks of 0(n) complexity. In D.S. Touretzky, editor, Advances in neural information processing systems, volume 2, pages 703–711, San Mateo — CA, 1989. Morgan Kaufmann.

    Google Scholar 

  16. A. Starzyk, J. and X. Fang. CMOS current mode winner-take-all circuit with both excitatory and inhibitory feedback. Electronic Letters, 29(10):908–910, May 1993.

    Article  Google Scholar 

  17. G. Indiveri, P. Oswald, and J. Kramer. An adaptive visual tracking sensor with a hysteretic winner-take-all network. In Proc. IEEE International Symposium on Circuits and Systems, pages 324–327. IEEE, May 2002.

    Google Scholar 

  18. G. Indiveri. A neuromorphic VLSI device for implementing 2-D selective attention systems. IEEE Trans. on Neural Networks, 12(6):1455–1463, November 2001.

    Article  Google Scholar 

  19. E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina, S. Fusi, and P. Del Giudice. A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long term memory. IEEE Trans. Neural Net., 14(5):1297–1307, Sentember 2003.

    Article  Google Scholar 

  20. K.A. Boahen. Communicating neuronal ensembles between neuromorphic chips. In T. S. Lande, editor, Neuromorphic Systems Engineering, pages 229–259. Kluwer Academic, Norwell, MA, 1998.

    Chapter  Google Scholar 

  21. J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie. Silicon auditory processors as computer peripherals. IEEE Trans. on Neural Networks, 4:523–528, 1993.

    Article  Google Scholar 

  22. S. R. Deiss, R. J. Douglas, and A. M. Whatley. A pulse-coded communications infrastructure for neuromorphic systems. In W. Maass and C. M.Bishop, editors, Pulsed Neural Networks, chanter 6. naees 157–178. MITPress, 1998.

    Google Scholar 

  23. V. Dante and P. Del Giudice. The PCI-AER interface board. In A. Cohen, R. Douglas, T. Horiuchi, G. Indiveri, C. Koch, T. Sejnowski, and S. Shamma, editors, 2001 Telluride Workshop on Neuromorphic Engineering Report, pages 99–103, 2001. http://www.ini.unizh.ch/telluride/previous/report01.pdf.

    Google Scholar 

  24. E. Fragnière, A. van Schaik, and E. Vittoz. Design of an analogue VLSI model of an active cochlea. Jour. of Analog Integrated Circuits and Signal Processing, 13(1/2):19–35, May 1997.

    Article  Google Scholar 

  25. J. Kramer. An integrated optical transient sensor. IEEE Trans. on Circuits and Systems II, 49(9):612–628, Sep 2002.

    Article  Google Scholar 

  26. W. Maass and C. M. Bishop. Pulsed Neural Networks. MIT Press, 1998.

    MATH  Google Scholar 

  27. G. Indiveri. A low-power adaptive integrate-and-fire neuron circuit. In Proc. IEEE International Symposium on Circuits and Systems. IEEE, May 2003.

    Google Scholar 

  28. E. Chicca, G. Indiveri, and R.J. Douglas. An adaptive silicon synapse. In Proc. IEEE International Symposium on Circuits and Systems. IEEE, May 2003.

    Google Scholar 

  29. C. Rasche and R. Hahnloser. Silicon synaptic depression. Biological Cybernetics, 84(1):57–62, 2001.

    Article  Google Scholar 

  30. G. Indiveri. Neuromorphic bistable VLSI synapses with spike-timing dependent plasticity. In Advances in Neural Information Processing Systems, volume 15, Cambridge, MA4, December 2002. MIT Press.

    Google Scholar 

  31. C. Diorio, P. Hasler, B.A. Minch, and C. Mead. A single-transistor silicon synapse. IEEE Trans. Electron Devices, 43(11):1972–1980,1996.

    Article  Google Scholar 

  32. A. Bofill and A.F. Murray. Circuits for VLSI implementation of temporally asymmetric Hebbian learning. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information processing systems, volume 14. MIT Press, Cambridge, MA, 2001.

    Google Scholar 

  33. C.A. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–1636, 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Indiveri, G. (2004). Neuromorphic Engineering. In: Valle, M. (eds) Smart Adaptive Systems on Silicon. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-2782-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2782-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1051-9

  • Online ISBN: 978-1-4020-2782-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics