Skip to main content

Bioartificial Neuronal Networks: Coupling Networks of Biological Neurons to Microtransducer Arrays

  • Chapter
Smart Adaptive Systems on Silicon

Abstract

In this chapter we introduce the concept of bioartificial neuronal networks, that is networks of biological neurons cultured in-vitro and coupled to Micro Transducer Arrays (MTAs). In-vitro cultured neurons extracted from rats or mice embryos form a bi-dimensional physical model of the brain and, in spite of their simplified level of organization, are an useful framework to study information processing in the nervous system. One of the peculiar aspects is the possibility to chronically (i.e., for several days or weeks) stimulate at and record from multiple sites at the same time, thus establishing a bi-directional interface between a neuronal (i.e. biological) system and an artificial device. This experimental framework can be utilized as a new paradigm for studying novel and advanced neuro-electronic interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. W. Gross and F. U. Schwalm, “A closed chamber for long-term electrophysiological and microscopical monitoring of monolayer neuronal networks,” J. Neurosci. Methods, vol. 52, pp. 73–85, 1994.

    Article  Google Scholar 

  2. G. Bi and M. Poo, “Distributed synaptic modification in neural networks induced by patterned stimulation,” Nature. vol. 401. pp. 792–796. 1999.

    Article  Google Scholar 

  3. S. Fields, “The interplay of biology and technology,” Proc. Natl. Acad. Sci. U.S.A., vol. 98, pp. 10051–10054, 2001.

    Article  Google Scholar 

  4. C. A. Thomas, P. A. Springer, G. E. Loeb, Y. Berwald-Netter, and L. M. Okun, “A miniature microelectrode array to monitor the bioelectric activity of cultured cells,” Exp. Cell Res., vol. 74, pp. 61–66, 1972.

    Article  Google Scholar 

  5. J. Pine, “Recording action potentials from cultured neurons with extracellular microcircuit electrodes,” J. Neurosci. Methods, vol. 2, pp. 19–31, 1980.

    Article  Google Scholar 

  6. D. Kleinfield, K. H. Kahler, and P. E. Hockberger, “Controlled outgrowth of dissociated neurons on patterned substrates,” J. Neurosci., vol. 8, pp. 4096–4120, 1988.

    Google Scholar 

  7. M. C. Denyer, S. T. Britland, A. S. G. Curtis, and C. D. W. Wilkinson, “Patterning living neural networks on microfabricated electrophysiological recording devices,” J Cell Eng, vol. 2, pp. 122–130, 1997.

    Google Scholar 

  8. G. W. Gross and J. M. Kowalski, “Experimental and theoretical analyses of random networks dynamics,” in Neural Networks, Concepts, Application and Implementation, vol. 4, P. Antognetti and V. Milutinovic, Eds.: Prentice Hall, 1991, pp. 47–110.

    Google Scholar 

  9. G. W. Gross, B. K. Rhoades, and R. J. Jordan, “Neuronal networks for biochemical sensing,” Sens. Actuators, vol. 6, pp. 1–8, 1992.

    Article  Google Scholar 

  10. M. Grattarola and S. Martinoia, “Modeling the neuron-microtransducer junction: from extracellular to patch recording,” IEEE Trans. Biomed. Eng., vol. 40, pp. 35–41, 1993.

    Article  Google Scholar 

  11. G. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE, 2nd ed: McGraw-Hill, 1993.

    Google Scholar 

  12. S. Martinoia, P. Massobrio, M. Bove, and G. Massobrio, “Neurons coupled to microelectrode arrays: circuit models, simulations and experimental data interpretation,” IEEE Trans. Biomed. Eng., vol. 51, 2004.

    Google Scholar 

  13. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its applications to conduction and excitation in nerve,” J. Physiol., vol. 117, pp. 500–544, 1952.

    Google Scholar 

  14. L. O. Chua, “Device modeling via basic nonlinear circuit elements,” IEEE Trans. Circuits Syst, vol. CAS-27, pp. 1014–1044, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Storace, M. Bove, M. Grattarola, and M. Parodi, “Simulations of the behavior of synaptically driven neurons via time-invariant circuit models,” IEEE Trans. Biomed. Eng., vol. 44, pp. 1282–1287, 1997.

    Article  Google Scholar 

  16. D. A. Robinson, “The electrical properties of metal microelectrodes,” Proc. IEEE, vol. 56, pp. 1065–1071, 1968.

    Article  Google Scholar 

  17. I. Segev, J. W. Fleshman, J. P. Miller, and B. Bunow, “Compartmental models of complex neurons,” in Methods in neuronal modeling. From synapses to network, C. Koch and I. Segev, Eds. Cambridge, MA: (Bradford Book) MIT Press, 1989, pp. 63–96.

    Google Scholar 

  18. A. Destexhe, Z. Mainen, and T. J. Sejnowski, “An efficient method for computing synaptic conductances based on to kinetic model of receptor binding,” Neural Comput, vol. 6, pp. 14–18, 1994.

    Article  Google Scholar 

  19. J. Newman, “Resistance for flow of current to a disk,” Journal of Electrochemical Society, vol. 113, pp. 501–502, 1966.

    Article  Google Scholar 

  20. S. Vassanelli and P. Fromherz, “Transistor probes local potassium conductances in the adhesion region of cultured rat hippocampal neurons,” J. Neurosci., vol. 19, pp. 6767–6773, 1999.

    Google Scholar 

  21. E. Maeda, H. P. C. Robinson, and A. Kawana, “The mechanism of generation and propagation of synchronized bursting in developing networks of cortical neurons,” J. Neurosci., vol. 15, pp. 6834–6845, 1995.

    Google Scholar 

  22. M. Bove, S. Martinoia, G. Verreschi, M. Giugliano, and M. Grattarola, “Analysis of the signals generated by networks of neurons coupled to planar arrays of microtransducers in simulated experiments,” Biosens. Bioelectron., vol. 13, pp. 601–612, 1998.

    Article  Google Scholar 

  23. M. Canepari, M. Bove, E. Maeda, M. Cappello, and A. Kawana, “Experimental analysis of neuronal dynamics in cultured cortical networks and transitions between different patterns of activity,” Biol. Cybern., vol. 77, pp. 153–162, 1997.

    Article  MATH  Google Scholar 

  24. M. Bove, G. Massobrio, S. Martinoia, and M. Grattarola, “Realistic simulations of neurons by means of an to hoc modified version of SPICE,” Biol. Cybern., vol. 71, pp. 137–145, 1994.

    Article  Google Scholar 

  25. H. Kamioka, E. Maeda, Y. Jimbo, H. P. C. Robinson, and A. Kawana, “Spontaneous periodic synchronized bursting during formation of mature patterns of connections in cortical cultures,” Neurosci. Lett., vol. 206, pp. 109–112, 1996.

    Article  Google Scholar 

  26. G. Shahaf and S. Marom, “Learning in networks of cortical neurons,” J. Neurosci., vol. 21, pp. 8782–8788, 2001.

    Google Scholar 

  27. L. C. Katz and C. J. Shatz, “Synaptic activity and the construction of cortical circuits,” Science, vol. 274, pp. 1133–1138, 1996.

    Article  Google Scholar 

  28. Y. Jimbo, Y. Tateno, and H. P. C. Robinson, “Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons,” Biophys. J., vol. 76, pp. 670–678. 1999.

    Article  Google Scholar 

  29. M. Chiappalone, A. Vato, M. T. Tedesco, M. Marcoli, F. A. Davide, and S. Martinoia, “Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications,” Biosens. Bioelectron., vol. 18, pp. 627–634, 2003.

    Article  Google Scholar 

  30. F. Rieke, D. Warland, R. d. R. van Steveninck, and W. Bialek, Spikes:exploring the neural code. Cambridge, Massachusetts: The MIT Press. 1997.

    Google Scholar 

  31. T. B. DeMarse, D. A. Wagenaar, A. W. Blau, and S. M. Potter, “The neurally controlled animat: biological brains acting with simulated bodies,” Auton. Robots, vol. 11, pp. 305–310, 2001.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martinoia, S., Chiappalone, M., Vato, A. (2004). Bioartificial Neuronal Networks: Coupling Networks of Biological Neurons to Microtransducer Arrays. In: Valle, M. (eds) Smart Adaptive Systems on Silicon. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-2782-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2782-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1051-9

  • Online ISBN: 978-1-4020-2782-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics