Skip to main content

Remote Powering and Control of Intelligent Microsystems

  • Chapter
  • 405 Accesses

Abstract

An electromagnetic field can be exploited for remote powering and control of microsystems. An interesting case is the application to microrobotics, which is an important field of research. Many applications are expected, particularly in the field of the microassembly and the test of circuits in confined environments [1]. This chapter describes the underlying principles and reports the successful asynchronous remote operation of two Distributed Micro Mechanical Systems (DMMS) by inductive coupling. The intelligence of the system is provided by a custom high-voltage controller IC providing the link between the power and data on the receiver antenna on one side, and the actuators and eventually sensors of the microrobot on the other side. Details on the antenna design in order to optimize the inductive coupling are given. The demonstrator achieved the independent remote control of two arrays of 1,700 electrostatic actuators, having a total capacitance of 2 nF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  1. P. Dariot, R. Valleggi, M. C. Carrozzat, M. C. Montesi and M. Coccot, “Microactuators for microrobots: a critical survey”, I of Micromechanics and Microengineering, vol. 2, 1992, pp. 141–157.

    Google Scholar 

  2. R. P. Feynman, “There’s plenty of room at the bottom”, J. of MicroElectroMechanical Systems, vol.1, n° 1, 1992, pp. 60–66.

    Article  Google Scholar 

  3. W. C. Tang, T. C. H. Nguyen and R. T. Howe, “Laterally driven polysilicon resonant microstructures”, Sensors and Actuators, vol. 20, 1990, pp. 25–32.

    Article  Google Scholar 

  4. K. Minami, S. Kawamura and M. Esashi, “Fabrication of distributed electrostatic micro actuator (DEMA) “, J. of MicroElectroMechanical Systems, vol. 2, n° 3, 1993, pp. 121–127.

    Google Scholar 

  5. H. Fujita, “Future of actuators and microsystems”, Sensors and Actuators, vol. A 56, 1996, pp. 105–106.

    Article  Google Scholar 

  6. N. Takeshima and H. Fujita, “Design and control of systems with microactuators array”, in Recent Advances in Motion Control, K. Ohnishi et al. , Eds. Nikkan Kogyo Shimbun Ltd., 1990, pp. 125–130.

    Google Scholar 

  7. M. Ataka, A. Omodaka, N. Takeshima and H. Fujita, “Fabrication and operation of polyimide bimorph actuators for a ciliary motion system”, J. of MicroElectroMechanical Systems, vol. 2, n° 4, 1993, pp. 146–150.

    Article  Google Scholar 

  8. S. Konishi and H. Fujita, “A conveyance system using air flow based on the concept of distributed micro motion systems”, J. of MicroElectroMechanical Systems, vol. 3, n° 2, 1994, pp. 54–58.

    Google Scholar 

  9. Y. Mita, S. Konishi and H. Fujita, “Two dimensional micro conveyance system with through holes for electrical and fluidic interconnection”, Proc. of Transducers’97, Chicago (USA), 1997, pp. 37–40.

    Google Scholar 

  10. M. Edo, Y. Watanabe, O. Morita, H. Nakazawa and E. Yonezawa, “Two dimensional micro-conveyer with integrated electrostatic actuators”, Proc. of MEMS’99, Orlando (USA), 1999, pp. 43–48.

    Google Scholar 

  11. Y. Mita, D. Collard, M. Mita and H. Fujita, “Fabrication of an inverted scratch drive actuator for a powerful and precise conveyance system”, Trans. of IEEE Japan, vol. 119-E, 1999, pp. 1–2.

    Google Scholar 

  12. H. Nakazawa, Y. Watanabe, O. Morita, M. Edo and E. Yonezawa, “The two-dimensional micro conveyer”, Proc. of Transducers’97, Chicago (USA), 1997, pp. 33–36.

    Google Scholar 

  13. T. Yasuda, I. Shimoyama and H. Miura, “Microrobot actuated by a vibration energy field”, Sensors and Acuators A, vol. 43, 1994, pp. 366–370.

    Article  Google Scholar 

  14. T. Ebefors, J. U. Mattsson, E. Kälvesten and G. Stemme, “A walking silicon microrobot”, Proc. of Transducers 99, 1999, pp. 1202–1205.

    Google Scholar 

  15. M. Mita, M. Arai, S. Tensaka, D. Kobayashi, P. Basset, A. Kaiser, P. Masquelier, L. Buchaillot, D. Collard and H. Fujita, “Electrostatic Impact-Drive Microactuator”, Proc. of MEMS’01, 2001, pp. 590–593.

    Google Scholar 

  16. S. Hollar, A. Flynn, C. Bellew and K. S. J. Pister, “Solar Powered 10 mg silicon robot”, proceeding of MEMS’03, 2003, pp. 706–711.

    Google Scholar 

  17. K. Finkenzeller, RFID handbook, John Wiley & son, 1999, p. 68.

    Google Scholar 

  18. J. Craninckx, M. S. J. Steyaert, “A 1.8-GHz low phase noise CMOS VCO using optimized hollow spiral inductors”, J. of Solid-State Circuits, vol. 32, n°5, May 1997, pp.736–744.

    Article  Google Scholar 

  19. C. P. Yue and S. S. Wong, “On chip spiral inductors with patterned ground shields for Si-based RF IC’s”, J. of Solid-State Circuits, vol. 33, n°5, May 1998, pp. 743–752.

    Article  Google Scholar 

  20. Niknejad and R. G. Meyer, “Analysis, design, and optimization of spiral inductors and transformers for Si RF IC’s’, J. of Solid-State Circuits, vol. 33, no. 10, October 1998, pp. 1470–1481.

    Article  Google Scholar 

  21. P. Basset, A. Kaiser, D. Collard, L. Buchaillot, “Process and realization of a 3D gold electroplated antenna on a flexible epoxy film for wireless micro-motion system”, J. of Vacuum Science Technology, Vol. B 20 n°4, Jul/Aug 2002, pp. 1465–1470.

    Article  Google Scholar 

  22. P. Basset, A. Kaiser, P. Bigotte, D. Collard, L. Buchaillot, “A large stepwise motion electrostatic actuator for wireless microrobot”, Proc. of MEMS’02, Las Vegas, U.S.A., 2002, pp. 606–609.

    Google Scholar 

  23. P. Basset, A. Kaiser, B. Stefanelli, M. Wallenne, D. Collard, L. Buchaillot, “A 100V IC for the remote powering and independent control of multiple electrostatic actuators”, Proc. of Transducers’03, Boston, U.S.A., 2003, pp. 1711–1713.

    Google Scholar 

  24. T. H. Lee, The design of CMOS radiofrequency integrated circuit, Cambridge University Press, 1998, p. 98.

    Google Scholar 

  25. T. Akiyama, D. Collard, and H. Fujita, «Scratch Drive Actuator With Mechanical Links for Self-Assembly of three-dimensional MEMS», J. of MicroElectroMechanical Systems, vol. 6, n°1, Mar. 1997, pp 10–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Basset, P., Buchaillot, L., Kaiser, A. (2004). Remote Powering and Control of Intelligent Microsystems. In: Valle, M. (eds) Smart Adaptive Systems on Silicon. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-2782-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2782-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1051-9

  • Online ISBN: 978-1-4020-2782-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics