The Cassini Ion and Neutral Mass Spectrometer (INMS) Investigation

  • J. H. WaiteJr.
  • W. S. Lewis
  • W. T. Kasprzak
  • V. G. Anicich
  • B. P. Block
  • T. E. Cravens
  • G. G. Fletcher
  • W.-H. Ip
  • J. G. Luhmann
  • R. L. McNutt
  • H. B. Niemann
  • J. K. Parejko
  • J. E. Richards
  • R. L. Thorpe
  • E. M. Walter
  • R. V. Yelle

Abstract

The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation will determine the mass composition and number densities of neutral species and low-energy ions in key regions of the Saturn system. The primary focus of the INMS investigation is on the composition and structure of Titan’s upper atmosphere and its interaction with Saturn’s magnetospheric plasma. Of particular interest is the high-altitude region, between 900 and 1000 km, where the methane and nitrogen photochemistry is initiated that leads to the creation of complex hydrocarbons and nitriles that may eventually precipitate onto the moon’s surface to form hydrocarbon—nitrile lakes or oceans. The investigation is also focused on the neutral and plasma environments of Saturn’s ring system and icy moons and on the identification of positive ions and neutral species in Saturn’s inner magnetosphere. Measurement of material sputtered from the satellites and the rings by magnetospheric charged particle and micrometeorite bombardment is expected to provide information about the formation of the giant neutral cloud of water molecules and water products that surrounds Saturn out to a distance of ~12 planetary radii and about the genesis and evolution of the rings.

The INMS instrument consists of a closed ion source and an open ion source, various focusing lenses, an electrostatic quadrupole switching lens, a radio frequency quadrupole mass analyzer, two secondary electron multiplier detectors, and the associated supporting electronics and power supply systems. The INMS will be operated in three different modes: a closed source neutral mode, for the measurement of non-reactive neutrals such as N2 and CH4; an open source neutral mode, for reactive neutrals such as atomic nitrogen; and an open source ion mode, for positive ions with energies less than 100 eV. Instrument sensitivity is greatest in the first mode, because the ram pressure of the inflowing gas can be used to enhance the density of the sampled non-reactive neutrals in the closed source antechamber. In this mode, neutral species with concentrations on the order of ≧104 cm−3 will be detected (compared with ≧105 cm−3 in the open source neutral mode). For ions the detection threshold is on the order of 10−2 cm−3 at Titan relative velocity (6 km sec−1). The INMS instrument has a mass range of 1–99 Daltons and a mass resolution M/∆M of 100 at 10% of the mass peak height, which will allow detection of heavier hydrocarbon species and of possible cyclic hydrocarbons such as C6H6.

The INMS instrument was built by a team of engineers and scientists working at NASA’s Goddard Space Flight Center (Planetary Atmospheres Laboratory) and the University of Michigan (Space Physics Research Laboratory). INMS development and fabrication were directed by Dr. Hasso B. Niemann (Goddard Space Flight Center). The instrument is operated by a Science Team, which is also responsible for data analysis and distribution. The INMS Science Team is led by Dr. J. Hunter Waite, Jr. (University of Michigan).

Keywords

Cassini Titan Saturn Huygens Mass Spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anicich, V. G., and McEwan, M. J.: 1997, ‘Ion-molecule chemistry in Titan’s ionosphere’, Planet. Space. Sci. 45, 897.ADSGoogle Scholar
  2. Banaszkiewicz, M., Lara, L. M., Rodrigo, R., López-Moreno, J. J., and Molina-Cuberos, G. J.: 2000, ‘A coupled model of Titan’s atmosphere and ionosphere’, Icarus 147, 386.ADSGoogle Scholar
  3. Barbosa, D. D.: 1987, ‘Titan’s atomic nitrogen torus: Inferred properties and consequences for the Saturnian aurora’, Icarus 72, 53.ADSGoogle Scholar
  4. Barbosa, D. D.: 1990, ‘Radial diffusion in Saturn’s magnetosphere’, J. Geophys. Res. 95, 17167.ADSGoogle Scholar
  5. Bird, M. K., et al.: 1997, ‘Detection of Titan’s ionosphere from Voyager 1 radio occultation observations,’ Icarus 130, 426.ADSGoogle Scholar
  6. Brecht, S. H., Luhmann, J. G., and Larson, D. J.: 2000, ‘Simulation of the Saturnian magnetospheric interaction with Titan’, J. Geophys. Res. 105, 13119.ADSGoogle Scholar
  7. Bridge, H. A., et al.: 1981, ‘Plasma observations near Saturn: Initial results from Voyager’, Science 212, 217.ADSGoogle Scholar
  8. Bridge, H. A., et al.: 1982, ‘Plasma observations near Saturn: Initial results from Voyager 2’, Science 215, 563.ADSGoogle Scholar
  9. Broadfoot, A. L., et al.: 1981, ‘Extreme ultraviolet observations from Voyager 1 encounter with Saturn’, Science 212, 206.ADSGoogle Scholar
  10. Carlson, R. W.: 1980, ‘Photo-sputtering of ice and hydrogen around Saturn’s rings’, Nature 283, 461.ADSGoogle Scholar
  11. Capone, L. A., Dubach, J., Prasad, S. S., and Whitten, R. C.: 1983, ‘Galactic cosmic rays and N2 dissociation on Titan’, Icarus 55, 73.ADSGoogle Scholar
  12. Chappell, C. R., Moore, T. E., and Waite, J. H., Jr.: 1987, ‘The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere’, J. Geophys. Res. 92.Google Scholar
  13. Chassefière, E., and Cabane, M.: 1995, ‘Two formation regions for Titan’s hazes: Indirect clues and possible synthesis mechanisms’, Planet. Space Sci. 43, 91.ADSGoogle Scholar
  14. Clarke, J. T., Trauger, J., and Waite, J. H., Jr.: 1989, ‘Doppler-shifted H Ly a-emission from Jupiter’s aurora’, Geophys. Res. Lett. 16, 587.ADSGoogle Scholar
  15. Comas Solá, J.: 1908, ‘Observations des satellites principeaux de Jupiter et de Titan’, Astron. Nach. 179, 289.ADSGoogle Scholar
  16. Connemey, J. E. P. and Waite, J. H., Jr.: 1984, ‘New model of Saturn’s ionosphere with an influx of water from the rings’, Nature 312, 136.ADSGoogle Scholar
  17. Courtin, R., Gautier, D., and McKay, C. P.: 1995, ‘Titan’s thermal emission spectrum: Reanalysis of the Voyager infrared measurements’, Icarus 114, 144.ADSGoogle Scholar
  18. Coustenis, A., et al.: 1989, ‘Titan’s atmosphere from Voyager infrared observations’, Icarus 80, 54.ADSGoogle Scholar
  19. Coustenis, A., et al.: 1991, ‘Titan’s atmosphere from Voyager infrared observations. III. Vertical distributions of hydrocarbons and nitriles near Titan’s north pole’, Icarus 89, 152.ADSGoogle Scholar
  20. Coustenis, A., et al.: 1998, ‘Evidence for water vapor in Titan’s atmosphere from ISO/SWS data’, Astron. Astrophys. 336, L85.ADSGoogle Scholar
  21. Coustenis, A., et al.: 2003, ‘Titan’s atmosphere from ISO mid-infrared spectroscopy’, Icarus 161, 383.ADSGoogle Scholar
  22. Cravens, T. E., Keller, C. N., and Ray, B.: 1997, ‘Photochemical sources of non-thermal neutrals for the exosphere of Titan’, Planet. Space Sci. 45, 889.ADSGoogle Scholar
  23. Cravens, T. E., Lindgren, C. J., and Ledvina, S. A.: 1998, ‘A two-dimensional MHD model of Titan’s plasma environment’, Planet. Space Sci. 46, 1193.ADSGoogle Scholar
  24. Cravens, T. E., Vann, J., Clark, J., Yu, J., Keller, C. N., and Brull, C.: 2004, ‘The ionosphere of Titan: An updated theoretical model, Adv. Space Res. 33, 212.Google Scholar
  25. Edgington, S. G., et al.: 1998, ‘On the latitude variation of ammonia, acetylene, and phosphine altitude profiles on Jupiter from HST Faint Object Spectrograph observations’, Icarus 133, 192–209.ADSGoogle Scholar
  26. Eviatar, A. and Podolak, M.: 1983, ‘Titan’s gas and plasma torus’, J. Geophys. Res. 88, 833.ADSGoogle Scholar
  27. Eviatar, A. and Richardson, J. D.: 1990, ‘Water group plasma in the magnetosphere of Saturn’, Ann. Geophys. 8, 725.ADSGoogle Scholar
  28. Eviatar, A. and Richardson, J. D.: 1992, ‘Thermal plasma in the inner kronian magnetosphere’, Ann. Geophys. 10,511.ADSGoogle Scholar
  29. Fox, J. L. and Yelle, R. V.: 1997, ‘Hydrocarbon ions in the ionosphere of Titan’, Geophys. Res. Lett. 24, 2179.ADSGoogle Scholar
  30. Frank, L. A., et al.: 1980, ‘Plasmas in Saturn’s magnetosphere’, J. Geophys. Res. 85, 5695.ADSGoogle Scholar
  31. Friedson, A. J. and Yung, Y. L.: 1984, ‘The thermosphere of Titan’, J. Geophys. Res. 89, 85.ADSGoogle Scholar
  32. Galand, M., et al.: 1999, ‘The ionosphere of Titan: Ideal diurnal and nocturnal cases’, Icarus 140, 92.ADSGoogle Scholar
  33. Gan, L., Cravens, T. E., and Keller, C. N.: 1992. N.: 1992, ‘Electrons in the ionosphere of Titan’, J. Geophys. Res. 97, 12137.ADSGoogle Scholar
  34. Gan-Baruch, Z., et al.: 1994, Z., et al.: 1994, ‘Plasma observations in the ring plane of saturn’, J. Geophys. Res. 99, 11063.Google Scholar
  35. Gautier, D. and Raulin, F.: 1997, ‘Chemical composition of Titan’s atmosphere’, in Huygens: Science, Payload, and Mission, ESA Publication SP-1177, European Space Agency, Noordwijk, The Netherlands.Google Scholar
  36. Gurnett, D. A., Kurth, W. S., and Scarf, F. L.: 1981, ‘Plasma waves near Saturn: Initial results from Voyager 1’, Science 212, 235.ADSGoogle Scholar
  37. Gurnett, D. A., Scarf, F. L., and Kurth, W. S.: 1982, ‘The structure of Titan’s wake from plasma wave observation’, J. Geophys. Res. 87, 1395.ADSGoogle Scholar
  38. Hall, D. T., et al.: 1996, ‘Fluorescent hydroxyl emissions from Saturn’s ring atmosphere’, Science 272, 516.ADSGoogle Scholar
  39. Hamilton, D. C. and Burns, J. A.: 1993, ‘OH in Saturn’s rings’, Nature 365, 550.Google Scholar
  40. Hamilton, D. C., et al.: 1981, ‘Composition of nonthermal ions in the Jovian magnetosphere’, J. Geophys. Res. 86, 8301.ADSGoogle Scholar
  41. Hamilton, D. C., et al.: 1983, ‘Energetic atomic and molecular ions in Saturn’s magnetosphere’, J. Geophys. Res. 88, 8905.ADSGoogle Scholar
  42. Hanel, R., et al.: 1981, ‘Infrared observations of the Saturnian system from Voyager 1’, Science 212, 192.ADSGoogle Scholar
  43. Hartle, R. E., et al.: 1982, ‘Titan’s ion exosphere observed from Voyager 1’, J. Geophys. Res. 87, 1383.ADSGoogle Scholar
  44. Hidayat, T., et al.: 1997, ‘Millimeter and submillimeter heterodyne observations of Titan: Retrieval of the vertical profile of HCN and the 12C/13C ratio’, Icarus 126, 170.ADSGoogle Scholar
  45. Hidayat, T., et al.: 1998, ‘Millimeter and submillimeter heterodyne observations of Titan: The vertical profile of carbon monoxide in its stratosphere’, Icarus 133, 109.ADSGoogle Scholar
  46. Hilton, D. A. and Hunten, D. M.: 1988, ‘A partially collisional model of the Titan hydrogen torus’, Icarus 73, 248.ADSGoogle Scholar
  47. Hunten, D. M.: 1972, ‘The atmosphere of Titan’, Comments Astrophys. Space Phys. 4, 149.ADSGoogle Scholar
  48. Hunten, D. M., et al.: 1984, ‘Titan’, in T. Gehrels and M. S. Matthews (eds.), Saturn, University of Arizona Press, Tucson, AZ, pp. 671–759.Google Scholar
  49. Ip, W-H.: 1984, ‘The ring atmosphere of Saturn: Monte Carlo simulation of ring source models’, J. Geophys. Res. 89, 8843.ADSGoogle Scholar
  50. Ip, W.-H.: 1990, ‘Titan’s upper ionosphere’, Astrophys. J. 362, 354.ADSGoogle Scholar
  51. Ip, W-H.: 1995, ‘The exospheric systems of Saturn’s rings’, Icarus 115, 295.ADSGoogle Scholar
  52. Ip, W-H.: 1997, ‘On the neutral cloud distribution in the saturnian magnetosphere’, Icarus 126, 42.ADSGoogle Scholar
  53. Johnson, R. E.: 1998, ‘Sputtering and desorption from icy surfaces’, in B. Schmitt et al. (eds.), Solar System Ices, Kluwer Academic Publishers, The Netherlands, pp. 303–334.Google Scholar
  54. Johnson, R. E. and Sittler, E. C.: 1990, ‘Sputter-produced plasma as a measure of satellite surface composition—The Cassini mission’, Geophys. Res. Lett. 17, 1729.Google Scholar
  55. Johnson, R. E., et al.: 1989, ‘The neutral cloud and heavy ion inner torus at Saturn’, Icarus 77, 311.ADSGoogle Scholar
  56. Judge, D. L., Wu, F.-M., and Carlson, R. W.: 1980, ‘Ultraviolet photometer observations of the Saturnian system’, Science 207, 431.ADSGoogle Scholar
  57. Jurac, S., Johnson, R. E., and Richardson, J. D.: 2001a, ‘Saturn’s E ring and the production of the neutral torus’, Icarus 149, 384.ADSGoogle Scholar
  58. Jurac, S., Johnson, R. E., Richardson, J. D., and Paranicas, C.: 2001b, ‘Satellite sputtering in Saturn’s magnetosphere’, Planet. Space Sci. 49, 319.ADSGoogle Scholar
  59. Kabin, K., et al.: 1999, ‘Interaction of the Saturnian magnetosphere with Titan: Results of a three-dimensional MHD simulation’, J. Geophys. Res. 104, 2451.ADSGoogle Scholar
  60. Kasprzak, W. T., Niemann, H. B., and Mahaffy, P.: 1987, ‘Observations of energetic ions on the nightside of Venus’, J. Geophys. Res. 92, 291.ADSGoogle Scholar
  61. Kasprzak, W. T., et al.: 1996, ‘Cassini orbiter ion and neutral mass spectrometer instrument’, SPIE Proc. 2803, 129.ADSGoogle Scholar
  62. Keller, C. N. and Cravens, T. E.: 1994, ‘One-dimensional multispecies hydrodynamic models of the wakeside ionosphere of Titan’, J. Geophys. Res. 99, 6527.ADSGoogle Scholar
  63. Keller, C. N., Cravens, T. E., and Gan, L.: 1992, L.: 1992, ‘A model of the ionosphere of Titan’, J. Geophys. Res. 97, 12117.Google Scholar
  64. Keller, C. N., Cravens, T. E., and Gan, L.: 1994, ‘One-dimensional multispecies magnetohydrodynamic models of the ramside ionosphere of Titan’, J. Geophys. Res. 99, 6511.ADSGoogle Scholar
  65. Keller, C. M., Anicich, V. G., and Cravens, T. E.: 1998, ‘Model of Titan’s ionosphere with detailed hydrocarbon chemistry’, Planet. Space Sci. 46. 1157.ADSGoogle Scholar
  66. Khurana, K. K., Kivelson, M. G., and Russell, C. T.: 1997, ‘Interaction of Io with its torus: Does Io have an internal magnetic field?’, Geophys. Res. Lett. 34, 2391.ADSGoogle Scholar
  67. Kiser, R. W.: 1965, Introduction to Mass Spectrometry and Its Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ.Google Scholar
  68. Kivelson, M. G. and Russell, C. T.: 1983, ‘The interaction of flowing plasmas with planetary ionospheres: A Titan—Venus comparison’, J. Geophys. Res. 88, 49.ADSGoogle Scholar
  69. Kivelson, M. G., et al.: 1996, ‘Discovery of Ganymede’s magnetic field by the Galileo spacecraft’, Nature 384, 537.ADSGoogle Scholar
  70. Kostiuk, T., et al.: 1997, ‘Ethane abundance on Titan’, Planet. Space Sci. 45, 931.ADSGoogle Scholar
  71. Kuiper, G. P.: 1944, ‘Titan: A satellite with an atmosphere’, Astrophys. J. 100, 378.ADSGoogle Scholar
  72. Kunde, V. G., et al.: 1981, ‘C4H2, HC3N, and C2N2 in Titan’s atmosphere’, Nature 292, 686.ADSGoogle Scholar
  73. Lammer, H. and Bauer, S. J.: 1991, ‘Nonthermal atmospheric escape from Mars and Titan’, J. Geophys. Res. 96, 1819.ADSGoogle Scholar
  74. Lammer, H. and Bauer, S. J.: 1993, ‘Atmospheric mass loss from Titan by sputtering’, Planet. Space Sci. 41, 657.ADSGoogle Scholar
  75. Lanzerotti, L. J., et al.: 1983, ‘Implications of Voyager data for energetic ion erosion of the icy satellites of Saturn’, J. Geophys. Res. 88, 8765.ADSGoogle Scholar
  76. Lara, L. M., et al.: 1996, ‘Vertical distribution of Titan’s atmospheric neutral constituents’, J. Geophys. Res. 101, 23261.ADSGoogle Scholar
  77. Lazarus, A. J. and McNutt, R. L., Jr.: 1983, ‘Low energy plasma ion observations in saturn’s magnetosphere’, J. Geophys. Res. 88, 8831.ADSGoogle Scholar
  78. Ledvina, S. A. and Cravens, T. E.: 1998. E.: 1998, ‘A three-dimensional MHD model of plasma flow around Titan’ , Planetary and Space Sci. 46, 1175.Google Scholar
  79. Lellouch, E., et al.: 1989, ‘Titan’s atmosphere and hypothesized ocean: A reanalysis of the Voyager 1 radio-occultation and IRIS 7.7-μm data’, Icarus 79, 328.ADSGoogle Scholar
  80. Lellouch, E., et al.: 1990, ‘Titan’s thermosphere profile’, Icarus 83, 308.ADSGoogle Scholar
  81. Lewis, J. S.: 1971, ‘Satellites of the outer planets: Their physical and chemical nature’, Icarus 15, 174.ADSGoogle Scholar
  82. Lindal, G. F., et al.: 1983, ‘The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements’, Icarus 53, 348.ADSGoogle Scholar
  83. Luhmann, J. G.: 1996, ‘Titan’s ion exosphere wake: A natural ion mass spectrometer?’, J. Geophys. Res. 101, 29387.ADSGoogle Scholar
  84. Luhmann, J. G. and Walker, R. J.: 1981, ‘Model exospheres of the ringed planets’, Geophys. Res. Lett. 8, 107.ADSGoogle Scholar
  85. Luhmann, J. G., et al.: 1991, ‘A comparison of induced magnetotails of planetary bodies: Venus, Mars, and Titan’, J. Geophys. Res. 96, 11199.ADSGoogle Scholar
  86. Lunine, J. I.: 1993, ‘Does Titan have an ocean? A review of current understanding of Titan’s surface’, Rev. Geophys. 31, 133.ADSGoogle Scholar
  87. Lunine, J. I.: 1994, ‘Does Titan have oceans?’, Am. Scientist 82, 136.ADSGoogle Scholar
  88. Lunine, J. I., Stevenson, D. J., and Yung, Y. L.: 1983, ‘Ethane ocean on Titan’, Science 222, 1229.ADSGoogle Scholar
  89. Lutz, B. L., deBergh, C., and Owen, T.: 1983, ‘Titan: The discovery of carbon monoxide in its atmosphere’, Science 220, 1374.ADSGoogle Scholar
  90. Maguire et al.: 1981, ‘C3H8 and C3H4 in Titan’s atmosphere’, Nature 292, 683.Google Scholar
  91. Mahaffy, P. M. and Lai, K.: 1990, ‘An electrostatic quadrupole deflector for mass spectrometer applications’, J. Vac. Sci. A8, 3244.ADSGoogle Scholar
  92. Matheson, P. L. and Shemansky, D. E.: 1996, ‘Magnetospheric neutral clouds from Saturn’s icy satellites’ (abstract), Bull. Am. Astron. Soc., Division of Planetary Sciences meeting.Google Scholar
  93. McNutt, R. L., Jr. and Richardson, J. D.: 1988, ‘Constraints on Titan’s ionsphere’, Geophys. Res. Leu. 15, 709.ADSGoogle Scholar
  94. Morfill, G. E., et al.: 1983, ‘Some consequences of meteoroid impacts on Saturn’s rings’, Icarus 55, 439.ADSGoogle Scholar
  95. Müller-Wodarg, I. C. F., and Yelle, R. V.: 2002, ‘The effect of dynamics on the composition of Titan’s upper atmosphere’, Geophys. Res. Leu. 29, 54–1, doi 10.1029/2002GL016100.Google Scholar
  96. Müller-Wodarg, I. C. F., Yelle, R. V., Mendillo, M., Young, L. A., and Aylward, A. D.: 2000, ‘The thermosphere of Titan simulated by a global three-dimensional time-dependent model’, J. Geophys. Res. 105, 20833.Google Scholar
  97. Nagy, A. E and Cravens, T. E.: 1998, ‘Titan’s ionosphere: A review’, Planet. Space Sci. 46, 1149.ADSGoogle Scholar
  98. Nagy, A. F., Barakat, A. R., and Schunk, R. W.: 1986, ‘Is Jupiter’s ionosphere a significant plasma source for its magnetosphere?’ , J. Geophys. Res. 91, 351.Google Scholar
  99. Ness, N. E, Acuna, M. H., Behannon, K. W., and Neubauer, F. M.: 1982, ‘The induced magnetosphere of Titan’, J. Geophys. Res. 87, 1369.ADSGoogle Scholar
  100. Neubauer, F. M., et al.: 1984, ‘Titan’s magnetospheric interaction’, in T. Gehrels and M. S. Matthews (eds.), Saturn, University of Arizona Press, Tucson, AZ, pp. 760–787.Google Scholar
  101. Niemann, H. B., et al.: 1997, ‘The gas chromatograph mass spectrometer aboard Huygens’, in Huygens: Science, Payload and Mission ESA SP 1177, p. 85.Google Scholar
  102. Owen, T.: 1982, ‘The composition and origin of Titan’s atmosphere’, Planet. Space Sci. 30, 833.ADSGoogle Scholar
  103. Pospieszalska, M. K. and Johnson, R. E.: 1989, ‘Magnetospheric ion bombardment profiles of satellites-Europa and Dione’, Icarus 78, 1.ADSGoogle Scholar
  104. Pospieszalska, M. K. and Johnson, R. E.: 1991, ‘Micrometeorite erosion of the main rings as a source of plasma in the inner Saturnian plasma torus’, Icarus 93, 45.ADSGoogle Scholar
  105. Richardson, J. D.: 1986, ‘Thermal ions at Saturn: Plasma parameters and implications’, J. Geophys. Res. 91, 1381.ADSGoogle Scholar
  106. Richardson, J. D.: 1998, ‘Thermal plasma and neutral gas in Saturn’s magnetosphere’, Rev. Geophys. 36, 501.ADSGoogle Scholar
  107. Richardson, J. D. and Sittler, E. C., Jr.: 1990, ‘A plasma density model for Saturn based on Voyager observations’, J. Geophys. Res. 95, 12019.ADSGoogle Scholar
  108. Richardson, J. D., Eviatar, A., and Siscoe, G. L.: 1986, ‘Satellite tori at Saturn’, J. Geophys. Res. 91, 8749.ADSGoogle Scholar
  109. Richardson, J. D., et al.: 1998, ‘OH in Saturn’s magnetosphere: Observations and implications’, J. Geophys. Res. 103, 20245.ADSGoogle Scholar
  110. Rishbeth, H., Yelle, R. V., and Mendillo, M.: 2000, ‘Dynamics of Titan’s thermosphere’, Planet. Space Sci. 48, 51.ADSGoogle Scholar
  111. Roboz, A. and Nagy, A. F.: 1994, ‘The energetics of Titan’s ionosphere’, J. Geophys. Res. 99, 2087.ADSGoogle Scholar
  112. Samuelson, R. E., et al.: 1981, ‘Mean molecular weight and hydrogen abundance in Titan’s atmosphere’, Nature 292, 688.ADSGoogle Scholar
  113. Samuelson, R. E., et al.: 1983, ‘CO2 on Titan’, J. Geophys. Res. 88, 8709.ADSGoogle Scholar
  114. Samuelson, R. E., Nath, N. R., and Borysow, A.: 1997, ‘Gaseous abundances and methane supersaturation in Titan’s atmosphere’, Planet. Space. Sci. 45, 959.ADSGoogle Scholar
  115. Sandel, B. R., et al.: 1982, ‘Extreme ultraviolet observations from the Voyager 2 encounter with Saturn’, Science 215, 548.ADSGoogle Scholar
  116. Schardt, A. W., et al.: 1984, ‘The outer magnetosphere’, in T. Gehrels and M. S. Matthews (eds.), Saturn, University of Arizona Press, Tucson, AZ, pp. 416–459.Google Scholar
  117. Shemansky, D. E. and Hall, D. T.: 1992, ‘The distribution of atomic hydrogen in the magnetosphere of Saturn’, J. Geophys. Res. 97, 4143.ADSGoogle Scholar
  118. Shemansky, D. E., et al.: 1993, ‘Detection of the hydroxyl radical in the Saturn magnetosphere’, Nature 363, 329.ADSGoogle Scholar
  119. Shi, M., et al.: 1995, ‘Sputtering of water ice surfaces and the production of extended neutral atmospheres’, J. Geophys. Res. 100, 26387.ADSGoogle Scholar
  120. Smith, G. R., et al.: 1982, ‘Titan’s upper atmosphere: Composition and temperature from the EUV solar occultation results’, J. Geophys. Res. 87, 1351.ADSGoogle Scholar
  121. Smyth, W. H. and Marconi, M. L.: 1993, ‘The nature of the hydrogen tori of Titan and Triton’, Icarus 101, 18.ADSGoogle Scholar
  122. Strobel, D. F. and Shemansky, D. E.: 1982, ‘EUV emission from Titan’s upper atmosphere: Voyager 1 encounter’, J. Geophys. Res. 87, 1361.ADSGoogle Scholar
  123. Strobel, D. F., Meier, R. R., Summers, M. E., and Strickland, D. J.: 1991, ‘Nitrogen airglow sources: Comparison of Triton, Titan, and Earth’, Geophys. Res. Lett. 18, 689.ADSGoogle Scholar
  124. Strobel, D. F., Summers, M., and Zhu, X.: 1992, ‘Titan’s upper atmosphere: Structure and ultraviolet emissions’, Icarus100, 512.ADSGoogle Scholar
  125. Strobel, D. F., et al.: 1993, ‘Upper limit on Titan’s atmospheric argon abundance’, Icarus 103, 333.ADSGoogle Scholar
  126. Swaminathan, V., Alig, R., Murray, W., and Sarnoff, D.: 1996, ‘Design of an improved miniature ion neutral mass spectrometer for NASA applications’, NASA Contract NAS5–32823.Google Scholar
  127. Taylor, F. W. and Coustenis, A.: 1998, ‘Titan in the solar system’, Planet. Space Sci. 46, 1085.ADSGoogle Scholar
  128. Thompson, W. R., McDonald, G. D., and Sagan, C.: 1994, ‘The Titan haze revisited: Magnetospheric energy sources and quantitative tholin yields’, Icarus 112, 376.ADSGoogle Scholar
  129. Toublanc, D.: 1995, ‘Photochemical modeling of Titan’s atmosphere’, Icarus 113, 2.ADSGoogle Scholar
  130. Trafton, L. M.: 1972, ‘On the possible detection of H2 in Titan’s atmosphere’, Astrophys. J. 175, 285.ADSGoogle Scholar
  131. Vervack, R. J., Jr.: 1997, ‘Titan’s upper atmospheric structure derived from Voyager ultraviolet spectrometer observations’, Ph.D. dissertation, The University of Arizona, Tucson, AZ.Google Scholar
  132. Vervack, R. J., Jr., Sandel, B. R., and Strobel, D. F.: 2004, ‘New perspectives on Titan’s upper atmosphere from a reanalysis of the Voyager 1 uvs solar occultations by Titan’, Icarus, 170, 91.ADSGoogle Scholar
  133. Waite, J. H., Jr.: 1981, ‘The ionosphere of Saturn’, Ph.D. dissertation, University of Michigan, Ann Arbor, MI.Google Scholar
  134. Weiser, H., Vitz, C., and Moos, H. W.: 1977, ‘Detection of Lyman alpha emission from the Saturnian disk and from the ring system’, Science 197, 755.ADSGoogle Scholar
  135. Wilson, E. H.: 2002, ‘Investigations into the photochemistry of the current and primordial atmosphere of Titan’, Ph.D. Thesis, University of Michigan, Ann Arbor, MI.Google Scholar
  136. Wilson, G. R. and Waite, J. H., Jr.: 1989, ‘Kinetic modeling of the Saturn ring-ionosphere plasma environment’, J. Geophys. Res. 94, 17287.ADSGoogle Scholar
  137. Wolf, D. A. and Neubauer, F. M.: 1982, ‘Titan’s highly variable plasma environment’, J. Geophys. Res. 87, 881.ADSGoogle Scholar
  138. Yelle, R. V.: 1991, ‘Non-LTE models of Titan’s upper atmosphere’, Astrophys. J 383, 380.ADSGoogle Scholar
  139. Yelle, R. V., et al.: 1997, ‘Engineering models for Titan’s atmosphere’, in Huygens: Science, Payload, and Mission, ESA Publication SP-1177, European Space Agency, Noordwijk, The Netherlands.Google Scholar
  140. Yung, Y. L.: 1987, ‘An update of nitrile photochemistry on Titan’, Icarus 72, 468.ADSGoogle Scholar
  141. Yung, Y. L., Allen, M., and Pinto, J. P.: 1984, ‘Photochemistry of the atmosphere of Titan: Comparison between model and observations’, Astrophys. J. Suppl. 55, 465.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. H. WaiteJr.
    • 1
  • W. S. Lewis
    • 2
  • W. T. Kasprzak
    • 3
  • V. G. Anicich
    • 4
  • B. P. Block
    • 1
  • T. E. Cravens
    • 5
  • G. G. Fletcher
    • 1
  • W.-H. Ip
    • 6
  • J. G. Luhmann
    • 7
  • R. L. McNutt
    • 8
  • H. B. Niemann
    • 3
  • J. K. Parejko
    • 1
  • J. E. Richards
    • 3
  • R. L. Thorpe
    • 2
  • E. M. Walter
    • 1
  • R. V. Yelle
    • 9
  1. 1.University of MichiganAnn ArborUSA
  2. 2.Southwest Research InstituteSan AntonioUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.NASA Jet Propulsion LaboratoryPasadenaUSA
  5. 5.University of KansasLawrenceUSA
  6. 6.National Central UniversityChung-LiTaiwan
  7. 7.University of CaliforniaBerkeleyUSA
  8. 8.Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  9. 9.University of ArizonaFlagstaffUSA

Personalised recommendations