Skip to main content

Deconfinement and Freeze-Out Conditions for Hadronic Matter

  • Conference paper
Structure and Dynamics of Elementary Matter

Part of the book series: NATO Science Series ((NAII,volume 166))

  • 333 Accesses

Abstract

Matter implies the existence of a large-scale interconnected medium of uniform nature. When such a system breaks up into fragments much smaller than the size of the volume in which it is contained, it has undergone a change of state. Such a phase transition is similar to freeze-out (FO) in hadronic matter (HM). We would like to study this in a very simple geometric model of HM [1] — matter formed by hadrons, which can overlap; the volume of an individual hadron is V h =(4π/3)γ 3 h .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Magas, H. Satz, hep-ph/0308155, to appear in Eur. Phys. J. C.

    Google Scholar 

  2. See e.g., M. S. Isichenko, Rev. Mod. Phys. 64 (1992), 961.

    Article  MathSciNet  ADS  Google Scholar 

  3. G. Baym, Physica A 96 (1979), 131

    Article  ADS  Google Scholar 

  4. T. C¸elik, F. Karsch and H. Satz, Phys. Lett. B 97 (1980), 128

    Article  ADS  Google Scholar 

  5. H. Satz, Nucl. Phys. A 642 (1998), 130.

    Article  ADS  Google Scholar 

  6. E. Beth and G. E. Uhlenbeck, Physica 4 (1937), 915

    Article  ADS  MATH  Google Scholar 

  7. R. Hagedorn, Nuovo Cim. Suppl. 3 (1965), 147

    Google Scholar 

  8. R. Hagedorn, Nuovo Cim. A 56 (1968), 1027.

    Article  ADS  Google Scholar 

  9. F. Becattini, Z. Phys. C 69 (1996), 485

    Article  Google Scholar 

  10. F. Becattini and U. Heinz, Z. Phys. C 76 (1997), 269

    Article  Google Scholar 

  11. F. Becattini, Nucl. Phys. A 702 (2002), 336.

    Article  ADS  Google Scholar 

  12. F. Becattini et al., Phys. Rev. C 64 (2001), 024901.

    Google Scholar 

  13. See e.g., F. Karsch, Lect. Notes Phys. 583 (2002), 209.

    Article  Google Scholar 

  14. K. Hagiwara et al., Phys. Rev. D 66 (2002), 010001.

    Google Scholar 

  15. J. Rafelski, Phys. Lett. B 262 (1991), 333.

    Article  ADS  Google Scholar 

  16. For a recent compilation, see e.g. P. Braun-Munzinger et al., nucl-th/0304013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Magas, V.K., Satz, H. (2004). Deconfinement and Freeze-Out Conditions for Hadronic Matter. In: Greiner, W., Itkis, M.G., Reinhardt, J., Güçlü, M.C. (eds) Structure and Dynamics of Elementary Matter. NATO Science Series, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2705-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2705-5_58

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2446-7

  • Online ISBN: 978-1-4020-2705-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics