Advertisement

Exotic Nuclei — the Experimental Quest

  • S. Hofmann
Conference paper
Part of the NATO Science Series book series (NAII, volume 166)

Abstract

The nuclear shell model predicts that the next doubly magic shell-closure beyond208 Pb is at a proton number Z =114, 120, or 126 and at a neutron number N =172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical ‘Super-Heavy Elements’ (SHEs). The measured decay data reveal that for the heaviest elements, the dominant decay mode is α emission, not fission. Decay properties as well as reaction cross-sections are compared with results of theoretical investigations. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques. At a higher sensitivity, the exploration of the region of spherical SHEs now becomes feasible, almost forty years after its prediction.

Keywords

Excitation Energy Excitation Function Compound Nucleus Decay Chain Exotic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81 (1966), 1.Google Scholar
  2. [2]
    A. Sobiczewski et al, Phys. Lett. 22 (1966), 500.ADSCrossRefGoogle Scholar
  3. [3]
    H. Meldner, Ark. Fys. 36 (1967), 593.Google Scholar
  4. [4]
    S.G. Nilsson et al, Nucl. Phys. A 115 (1968), 545.ADSCrossRefGoogle Scholar
  5. [5]
    U. Mosel and W. Greiner, Z. Phys. A 222 (1969), 261.Google Scholar
  6. [6]
    E.O. Fiset and J.R. Nix, Nucl. Phys. A 193 (1972), 647.ADSCrossRefGoogle Scholar
  7. [7]
    A. Sobiczewski, Physica Scripta 10A (1974), 47.ADSCrossRefGoogle Scholar
  8. [8]
    J. Randrup et al, PC 13 (1976), 229.Google Scholar
  9. [9]
    P. Möller and J.R. Nix, Atomic Data and Nucl. Data Tables 26 (1981), 165.CrossRefGoogle Scholar
  10. [10]
    A. Sobiczewski et al, Phys. Lett. B 224 (1989), 1.ADSCrossRefGoogle Scholar
  11. [11]
    A. Sobiczewski, Phys. Part. Nucl. 25 (1994), 295.Google Scholar
  12. [12]
    A. Sobiczewski et al, J. Alloys Comp. 213/214 (1994), 38.Google Scholar
  13. [13]
    P. M~oller and J.R. Nix, J. Phys. G: Nucl. Part. Phys. 20 (1994), 1681.Google Scholar
  14. [14]
    R. Smolanczuk et al, Phys. Rev. C 52 (1995), 1871.Google Scholar
  15. [15]
    P. Möller et al, Atomic Data and Nucl. Data Tables 59 (1995), 185.Google Scholar
  16. [16]
    P. Möller et al, Atomic Data and Nucl. Data Tables 66 (1997), 131.Google Scholar
  17. [17]
    I. Muntian et al, Phys. Lett. B 500 (2001), 241.ADSCrossRefGoogle Scholar
  18. [18]
    S. Cwiok et al, Nucl. Phys. A 611 (1996), 211.ADSCrossRefGoogle Scholar
  19. [19]
    G.A. Lalazissis et al, Nucl. Phys. A 608 (1996), 202.ADSCrossRefGoogle Scholar
  20. [20]
    K. Rutz et al, Phys. Rev. C 56 (1997), 238.ADSCrossRefGoogle Scholar
  21. [21]
    A.T. Kruppa et al, Phys. Rev. C 61(2000), 034313.Google Scholar
  22. [22]
    R. Bass, Nucl. Phys. A 231 (1974), 45.ADSCrossRefGoogle Scholar
  23. [23]
    R.K. Gupta et al, Z. Phys. A 283 (1977), 217.ADSCrossRefGoogle Scholar
  24. [24]
    von Oertzen, W.: Z. Phys. A 342 (1992), 177.ADSCrossRefGoogle Scholar
  25. [25]
    Y. Aritomo et al, Phys. Rev. C59 (1999), 796.Google Scholar
  26. [26]
    E.A. Cherepanov, Pramana J. Phys. 53 (1999), 619.Google Scholar
  27. [27]
    R. Smolanczuk, Phys. Rev. C 59 (1999), 2634.ADSCrossRefGoogle Scholar
  28. [28]
    R. Smolanczuk, Phys. Rev. Lett. 83 (1999), 4705.ADSCrossRefGoogle Scholar
  29. [29]
    G. Giardina et al, Eur. Phys. J. A 8 (2000), 205.ADSCrossRefGoogle Scholar
  30. [30]
    V.Yu. Denisov and S. Hofmann, Phys. Rev. C 61(2000), 034606.Google Scholar
  31. [31]
    G.G. Adamian et al, Nucl. Phys. A 678 (2000), 24.ADSCrossRefGoogle Scholar
  32. [32]
    G.G. Adamian et al, Phys. Rev. C 62 (2000), 064303.Google Scholar
  33. [33]
    R. Smolanczuk, Phys. Rev. C 63 (2001), 044607.Google Scholar
  34. [34]
    V.I. Zagrebaev, Phys. Rev. C 64 (2001), 034606.Google Scholar
  35. [35]
    V.Yu. Denisov and W. N~orenberg, Eur. Phys. J. A 15 (2002), 375.Google Scholar
  36. [36]
    G. Münzenberg et al, Nucl. Instr. Meth. 161 (1979), 65.Google Scholar
  37. [37]
    S. Hofmann, Z. Phys. A 291 (1979), 53.ADSCrossRefGoogle Scholar
  38. [38]
    S. Hofmann and G. M~unzenberg, Rev. Mod. Phys. 72 (2000), 733.ADSCrossRefGoogle Scholar
  39. [39]
    G. Münzenberg, Rep. Prog. Phys. A 51 (1988), 57.Google Scholar
  40. [40]
    S. Hofmann, Rep. Prog. Phys. A 61 (1998), 639.ADSCrossRefGoogle Scholar
  41. [41]
    IUPAC 42nd General Assembly, Ottawa, Canada, 9–17 August 2003.Google Scholar
  42. [42]
    S. Hofmann et al., Z. Phys. A 350 (1995), 277.ADSCrossRefGoogle Scholar
  43. [43]
    Yu.A. Lazarev et al., Phys. Rev. Lett. 75 (1995), 1903.Google Scholar
  44. [44]
    A. Ghiorso et al., Phys. Rev. Lett. 33 (1974), 1490.Google Scholar
  45. [45]
    M.R. Schmorak, Nuclear Data Sheets 59 (1990), 507.ADSCrossRefGoogle Scholar
  46. [46]
    K. Morita et al., RIKEN Accel. Prog. Rep. 35 (2003), 90.Google Scholar
  47. [47]
    T.N. Ginter et al., Phys. Rev. C 67 (2003), 064609.Google Scholar
  48. [48]
    S. Hofmann et al., Eur. Phys. J. A 10 (2001), 5.ADSCrossRefGoogle Scholar
  49. [49]
    I. Muntian et al., Phys. Rev. C 60 (1999), 041302.Google Scholar
  50. [50]
    S. Cwiok et al., Phys. Rev. Lett. 83, (1999), 1108 and private communication.Google Scholar
  51. [51]
    S. Hofmann et al., Z. Phys. A 350 (1995), 281.ADSCrossRefGoogle Scholar
  52. [52]
    S. Hofmann et al., Eur. Phys. J. A 14 (2002), 147.ADSCrossRefGoogle Scholar
  53. [53]
    Morita, K., Proc. Tours Symp. on Nuclear Physics V, Tours, France, 2003, AIP Conf. Proc., to published.Google Scholar
  54. [54]
    S. Hofmann et al., Z. Phys. A 354 (1996), 229.ADSGoogle Scholar
  55. [55]
    Ch.E. Düllmann et al., Nature 418 (2002), 859.Google Scholar
  56. [56]
    A. Türler et al., Eur. Phys. J. A 17 (2003), 505.Google Scholar
  57. [57]
    R. Mann et al., to be published.Google Scholar
  58. [58]
    B. Kindler et al., to be published.Google Scholar
  59. [59]
    R. Smolanczuk and A. Sobiczewski, Proc. XV. Nucl. Phys. Divisional Conf. on Low Energy Nuclear Dynamics, St.Petersburg, Russia, 1995, p.313, World Scientific, Singapore, 1995.Google Scholar
  60. [60]
    RIA, The Rare Isotope Accelerator Project, www.phy.anl.gov/ria (2000).Google Scholar
  61. [61]
    Yu.Ts. Oganessian etal., Phys. Rev. C 63 (2000), 011301 and contribution to this Conference.Google Scholar
  62. [62]
    Yu.Ts. Oganessian et al., Phys. Atomic Nuclei 64, 1349 (2001).Google Scholar
  63. [63]
    Yu.Ts. Oganessian et al., Nature 400 (1999), 242.Google Scholar
  64. [64]
    P. Armbruster etal., Phys. Rev. Lett. 54 (1985), 406.ADSCrossRefGoogle Scholar
  65. [65]
    S. Hofmann et al., Proc. of the VIII Int. Conference on Nucleus-Nucleus Collisions,Moscow, Russia, 2003, to be published.Google Scholar
  66. [66]
    M.G. Itkis et al., in Proc. Int. Workshop on Fusion Dynamics at the Extremes, Dubna, Russia, 2000, p. 93, World Scientific, 2001.Google Scholar
  67. [67]
    W.D. Myers and W.J. Swiatecki, Phys. Rev. C 62 (2000), 044610.Google Scholar
  68. [68]
    S. Hofmann, Prog. Part. Nucl. Phys. 46 (2001), 293.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • S. Hofmann
    • 1
    • 2
  1. 1.Gesellschaft für Schwerionenforschung (GSI)DarmstadtGermany
  2. 2.Physikalisches InstitutJ.W. Goethe-UniversitätFrankfurtGermany

Personalised recommendations