Review of QGP Signatures — Ideas Versus Observables

  • E. L. Bratkovskaya
  • M. Bleicher
  • A. Dumitru
  • K. Paech
  • M. Reiter
  • S. Soff
  • H. Stöcker
  • H. Weber
  • M. van Leeuwen
  • W. Cassing
Conference paper
Part of the NATO Science Series book series (NAII, volume 166)

Abstract

We investigate hadron production and transverse hadron spectra in nucleus-nucleus collisions from 2 A·GeV to 21.3 A·TeV within two independent transport approaches (UrQMD and HSD) based on quark, diquark, string and hadronic degrees of freedom. The enhancement of pion production in central Au+Au (Pb+Pb) collisions relative to scaled pp collisions (the‘kink’) is described well by both approaches without involving a phase transition. However, the maximum in the K + + ratio at 20 to 30 A·GeV (the‘horn’) is missed by ~ 40%. Also, at energies above ~ 5 A·GeV, the measured K ± m T -spectra have a larger inverse slope than expected from the models. Thus the pressure generated by hadronic interactions in the transport models at high energies is too low. This finding suggests that the additional pressure — as expected from lattice QCD at finite quark chemical potential and temperature — might be generated by strong interactions in the early pre-hadronic/partonic phase of central heavy-ion collisions. Finally, we discuss the emergence of density perturbations in a first-order phase transition and why they might affect relative hadron multiplicities, collective flow, and hadron mean-free paths at decoupling. A minimum in the collective flow v2 excitation function was discovered experimentally at 40 A·GeV — such a behavior has been predicted long ago as signature for a first order phase transition.

Keywords

Entropy Tral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Rafelski and B. M¨uller, Phys. Rev. Lett. 48 (1982) 1066.Google Scholar
  2. [2]
    J.D. Bjorken, Phys. Rev. D 27 1983 140.Google Scholar
  3. [3]
    Quark Matter 2002, Nucl. Phys. A 715 (2003) 1.Google Scholar
  4. [4]
    F. Karsch et al., Nucl. Phys. B 502 (2001) 321.Google Scholar
  5. [5]
    H. Stöcker and W. Greiner, Phys. Rep. 137 (1986) 277.Google Scholar
  6. [6]
    W. Cassing, E.L. Bratkovskaya, and S. Juchem, Nucl. Phys. A 674 (2000) 249.Google Scholar
  7. [7]
    Z. Fodor and S. D. Katz, JHEP 0203, 014 (2002)Google Scholar
  8. Z. Fodor, S. D. Katz, and K. K. Szabo, Phys. Lett. B 568, 73 (2003).Google Scholar
  9. V. Friese et al., NA49 Collaboration, J. Phys. G 30 (2004) 119.Google Scholar
  10. [9]
    M. I. Gorenstein, M. Ga´zdzicki, and K. Bugaev, Phys. Lett. B 567 (2003) 175.Google Scholar
  11. [10]
    M. Ga´zdzicki and M. I. Gorenstein, Acta Phys. Polon. B 30 (1999) 2705.Google Scholar
  12. [11]
    L. Van Hove, Phys. Lett. B 118 (1982) 138.Google Scholar
  13. S.A. Bass et al., Prog. Part. Nucl. Phys. 42 (1998) 255.Google Scholar
  14. M. Bleicher et al., J. Phys. G 25 (1999) 1859.Google Scholar
  15. [14]
    J. Geiss, W. Cassing, and C. Greiner, Nucl. Phys. A 644 (1998) 107.Google Scholar
  16. [15]
    W. Cassing and E. L. Bratkovskaya, Phys. Rep. 308 (1999) 65.ADSCrossRefGoogle Scholar
  17. [16]
    H. Weber, E.L. Bratkovskaya, W. Cassing, and H. Stöcker, Phys. Rev. C 67 (2003) 014904.Google Scholar
  18. [17]
    K. Hagiwara et al., (Review of Particle Properties), Phys. Rev. D 66 (2002) 010001.Google Scholar
  19. [18]
    B. Andersson et al., Z. Phys. C 57 (1993) 485.Google Scholar
  20. [19]
    Z. W. Lin et al., Nucl. Phys. A 698 (2002) 375.Google Scholar
  21. [20]
    L. Ahle et al., E866 and E917 Collaboration, Phys. Lett. B 476 (2000) 1Google Scholar
  22. L. Ahle ibid. 490 (2000) 53.Google Scholar
  23. [21]
    J. L. Klay et al., E895 Collaboration, Phys. Rev. C 68 (2003) 054905.Google Scholar
  24. [22]
    S. Ahmad et al., E891 Collaboration, Phys. Lett. B 382 (1996) 35Google Scholar
  25. C. Pinkenburg et al., E866 Collaboration, Nucl. Phys. A 698 (2002) 495c.Google Scholar
  26. [23]
    S. V. Afanasiev et al., NA49 Collaboration, Phys. Rev. C 66 (2002) 054902.Google Scholar
  27. [24]
    A. Mischke et al., NA49 Collaboration, J. Phys. G. 28 (2002) 1761; Google Scholar
  28. A. Mischke Nucl. Phys. A 715 (2993)453.Google Scholar
  29. [25]
    F. Antinori et al., WA97 Collaboration, Nucl. Phys. A 661 (1999) 130c.Google Scholar
  30. [26]
    D. Ouerdane et al., BRAHMS Collaboration, Nucl. Phys. A 715 (2003) 478; J. H. Lee et al., J. Phys. G 30 (2004) S85.Google Scholar
  31. [27]
    S. S. Adler et al., PHENIX Collaboration, preprint nucl-ex/0307010; preprint nuclex/0307022.Google Scholar
  32. [28]
    C. Adler et al., STAR Collaboration, preprint nucl-ex/0206008; O. Barannikova et al., Nucl. Phys. A 715 (2003) 458; K. Filimonov et al., preprint hep-ex/0306056.Google Scholar
  33. [29]
    E. L. Bratkovskaya et al., preprint nucl-th/0402026.Google Scholar
  34. [30]
    E. L. Bratkovskaya, W. Cassing and H. St~ocker, Phys. Rev. C 67 (2003) 054905.Google Scholar
  35. S. Soff et al., Phys. Lett. B 551 (2003) 115.Google Scholar
  36. [32]
    K. Redlich, J. Cleymans, H. Oeschler, and A. Tounsi, Acta Phys. Polonica B 33 (2002) 1609.Google Scholar
  37. [33]
    E. L. Bratkovskaya, S. Soff, H. St~ocker, M. van Leeuwen, and W. Cassing, Phys. Rev. Lett. 92 (2004) 032302.Google Scholar
  38. A. F~orster et al., KaoS Collaboration, J. Phys. G 28 (2002) 2011.Google Scholar
  39. [35]
    B. V. Martemyanov et al., nucl-th/0212064.Google Scholar
  40. [36]
    H. Sorge, Phys. Rev. C 52 (1995) 3291.Google Scholar
  41. [37]
    S. Soff et al., Phys. Lett. B 471 (1999) 89.Google Scholar
  42. [38]
    J. Geiss et al., Phys. Lett. B 447 (1999) 31.Google Scholar
  43. [39]
    I. Kraus et al., NA49 Collaboration, J. Phys. G 30 (2004) 5583.Google Scholar
  44. [40]
    I.G. Bearden et al., NA44 Collaboration, preprint nucl-ex/0202019.Google Scholar
  45. [41]
    M. Kliemant, B. Lungwitz, and M. Ga~zdzicki, preprint hep-ex/0308002.Google Scholar
  46. [42]
    H. van Hecke et al., Phys. Rev. Lett. 81 (1998) 5764.Google Scholar
  47. H. Liu et al., E895 Collaboration, Phys. Rev. Lett. 84 (2000) 5488.Google Scholar
  48. [44]
    C. Alt et al., NA49 Collaboration, preprint nucl-ex/0303001, Phys. Rev. C, in press.Google Scholar
  49. [45]
    J. Hofmann, H. St~ocker, U. Heinz, W. Scheid, and W. Greiner, Phys. Rev. Lett. 36 (1976) 88.ADSCrossRefGoogle Scholar
  50. [46]
    W. Cassing and U. Mosel, Prog. Part. Nucl. Phys. 25, 235 (1990).ADSCrossRefGoogle Scholar
  51. [47]
    J. Cleymans and K. Redlich, Phys. Rev. C 60 (1999) 054908.Google Scholar
  52. L. V. Bravina et al., Phys. Rev. C 60 (1999) 024904. Nucl. Phys. A 698 (2002) 383.Google Scholar
  53. [49]
    F. Karsch, talk given in Quark Matter 2004, Oakland, January 11 - 17, 2004; http://qm2004.lbl.gov
  54. [50]
    I. G. Bearden et al., BRAHMS Collaboration, Phys. Rev. Lett. 90 (2003) 102301.Google Scholar
  55. [51]
    E. V. Shuryak, Nucl. Phys. A 661 (1999) 119c.Google Scholar
  56. M. Reiter et al., Nucl. Phys. A 643 (1998) 99.Google Scholar
  57. [53]
    K. Paech, H. St~ocker and A. Dumitru, Phys. Rev. C 68 (2003) 044907; K. Paech, preprint nucl-th/0308049.Google Scholar
  58. M. Bleicher et al., Nucl. Phys. A 638 (1998) 391.Google Scholar
  59. [55]
    D. Adamova et al., CERES Collaboration, Phys. Rev. Lett. 90 (2003) 022301.Google Scholar
  60. [56]
    S. Soff, S. A. Bass and A. Dumitru, Phys. Rev. Lett. 86 (2001) 3981.ADSCrossRefGoogle Scholar
  61. [57]
    H. Weber, E.L. Bratkovskaya and H. St~ocker, Phys. Lett. B 545 (2002) 285.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • E. L. Bratkovskaya
    • 1
  • M. Bleicher
    • 1
  • A. Dumitru
    • 1
  • K. Paech
    • 1
  • M. Reiter
    • 1
  • S. Soff
    • 1
  • H. Stöcker
    • 1
  • H. Weber
    • 1
  • M. van Leeuwen
    • 2
  • W. Cassing
    • 3
  1. 1.Institut für Theoretische PhysikUniversitat FrankfurtFrankfurtGermany
  2. 2.NIKHEFAmsterdamNetherlands
  3. 3.Institut für Theoretische PhysikUniversität GiessenGiessenGermany

Personalised recommendations